
AD-A243 834 DlTIC

A FUT/G CE/EN G/91 D-06

FORMAL VERIFICATION OF
DIGITAL LOGIC

TtHESIS

Stuart Lewis Labovitz
Captain, USAF

AFIT/GCE/ENG/91D-06

91-19017

Approved, for pub!ir rlIa~ p: distribution unlimited

91 12 24 •3

December 1991 Master's Thesis

FORMAL VERIFICATION OF DIGITAL LOGIC

Stuart L. Labovitz, Captain, USAF

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCE/ENG/91D-06

WL/ELE
Wright-Patterson AFB OH 45433-6543

Approved for Public Release; Distribution Unlimited

'The most widely used technique for checking the correctness of digital circuit designs is simulation. As the
complexity of digital circuits has continued to grow, however, circuit designers have become unable to per-
form complete simulations of their integrated circuits. Formal hardware verification provides an alternative
approach, performing a series of mathematical proofs in order to show that the construction of the circuit from
its submodules will result in the intended overall circuit behavior. Papers by Barrow in 1983 and 1984 discuss
a PROLOG-based hierarchical formal circuit verification system named VERIFY. AFITVERIFY, a simple,
experimental reverse-engineered version of Barrow's VERIFY system, was produced by Captain Kevin Sparks
in 1991. Since that time, a new user interface has been added to the AFIT-VERIFY system, as well as the
capability to maintain a central repository of standard, previously verified parts. This thesis provides a detailed
description of these and other improvements that have been made to Sparks's AFITVERIFY system.

Formal Verification, Prolog, Hardware Verification 209

VN(CLASSIFIED I NCLASSIFIEI) UNCLASSIFIED UL

AFIT/GCE/ENG/91D-06

FORMAL VERIFICATION OF

DIGIrAL LOGIC

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of Aci••J'a ' l
Master of Science in Computer Engineering F

I :t,. , . l.€d1

Stuart Lewis Labovitz, B.S.E.E.

Captain, USAF ,

December, 1991

Approved for public release; distribution unlimited

Acknowledgments

I would like to thank my wife, Judith, for her understanding, patience, and advice

(luring my time at AFIT. Without her unfailing support and encouragement, this effort

would not have been possible. I would also like to thank Doctor Frank M. Brown, my thesis

and academic advisor, whose enthusiasm for artificial intelligence, logic programming, and

hardware verification was both contagious and enlightening. His support and guidance

allowed this project to reach a fruitful conclusion. Doctor Henry Potoczny also provided

mathematical guidance whenever required, as well as providing a sounding board for my

thoughts, for which I am indebted. I would also like to thank Capt Mark Mehalic for his

assistance and guidance in selecting components to be entered into the parts library, and

CPT Michael Dukes for his never-ending patience, advice, comments, and assistance on all

matters concerning PROLOG and hardware verification.

Stuart Lewis Labovitz

if

Table of Contents

Page

Acknowledgments i

Table of Contents iii

List of Figures vii

List of Tables viii

Abstract ix

I. Introduction 1-1

1.1 Background 1-1

1.2 Problem Description 1-2

1.3 Assumptions 1-2

1.3.1 Theory. 1-2

1.3.2 Resources 1-3

1.4 Scope 1-3

1.5 Standards 1-4

1.6 Approach/Methodology 1-4

1.7 Expected Benefits of This Research 1-5

1.8 Chapter Summary and Thesis Overview 1-5

II. Mathematical Theory And Concepts 2-1

2.1 Introduction 2-1

2.1.1 Problem Description 2-1

2.2 Sets and Mappings 2-2

2.2.1 Many-Sorted Algebras 2-2

iii

Page

2.2.2 Mappings 2-3

2.2.3 Homomorphisms 2-4

2.2.4 Isomorphisms 2-5

2.3 F inite-btate Automata 2-6

III. Literature Review 3-1

3.1 Introduction3-1

3.2 Early Research 3-1

3.2.1 Barrow's VERIFY System 3-1

3.2.2 A Correct By Construction IC Design System. . . 3-3

3.2.3 The VERDIS Environment for Design Verification. 3-4

3.3 Recent Work at AFIT 3-6

3.3.1 The AFITNVERIFY System 3-6

3.4 Conclusions 3-7

IV. Introduction to PROLOG 4-1

4.1 Development of PROLOG 4-1

4.2 PROLOG Syntax 4-2

4.2.1 Basic Structures 4-2

4.2.2 Simple Examples of PROLOG Code 4-6

4.2.3 PROLOG and Lists 4-9

4.3 Quintus PROLOG 4-11

4.3.1 Using Emacs In Quintus 4-11

4.3.2 Style and Syntax Restrictions 4-12

4.3.3 Control and Directive Constructs 4-14

4.3.4 Library Routines 4-15

4.4 Summary 4-16

iv

Page

V. Program Development of AFITVERIFY 5-1

5.1 Background 5-1

5.2 Initial Development Efforts 5-1

5.2.1 Analysis of Sparks's Final AFITVERIFY. 5-1

5.2.2 Attempted Integration of Scheme with PROLOG. 5-7

5.3 Initial Integration of AFITNVERIFY into

Quintus PROLOG 5-8

5.4 Enhancements to the AFITVERIFY System 5-10

5.5 New Modules In AFITVERIFY Parts Library 5-14

5.5.1 Four-Bit Full Adder with Carry Lookahead 5-16

VI. Results and Recommendations 6-1

6.1 Results of System Enhancements 6-1

6.2 Recommendations for Future Work 6-2

Appendix A. Program Listings A-1

A.I Source Code Listings A-3

A.1.1 qverify.pl A-3

A.1.2 boole2.pl A-15

A.1.3 derbeh.pl A-22

A.1.4 derstate.pl A-27

A.1.5 eqbeh.pl A-31

A.1.6 eval.pl A-33

A.1.7 multdyn.pl A-38

A.1.8 opentail.pl A-40

A.1.9 qops.pl A-42

A.2 Parts Library Listings A-49

A.2.1 parts.verified A-49

A.2.2 counter.pl A-50

v

Page

A.2.3 faddxor.pl A-51

A.2.4 modfiles.pl. A-53

A.2.5 primitive.pl A-54

A.2.6 xor.pl A-56

A.2.7 inv.pl A-57

A.2.8 aoi.pl A-58

A.2.9 half add.pl A-59

A.2.10 nand3.pl A-63

A.2.11 nand4.pl A-64

A.2.12 nand5.pl A-65

A.2.13 mux-4xl.pl.A-66

A.2.14 half add.pl A-70

A.2.15 f addnor.pl A-74

A.2.16 f add4c2. plA-79

Appendix B. Sample Program RunsB-i

B. 1 Sample Verification Run Using Sparks's AFITNVERIFY .. B-I

B.1.1 Verification of One-Bit Full Adder faddxor.pl . .. B-I

B.2 Sample Verification Runs Using New AFIT-VERIFY . . . B-I7

B.2.1 Verification of One-Bit Full Adder faddxor.pl . . B-17

B.2.2 Verification of Exclusive Or xor.pl

(Verbose Mode). B-23

B.2.3 Verification of Exclusive Or xor.pl (Terse Mode) . B-28

B.2.4 Verification of Three-, Four-, and Five-Input

NANDs nand3.pl, nand4.pl, nand5.pl. B-31

B.2.5 Verification of Half Adder halfadd.pl B-42

Blibliography.BIB-i

V itl. TA -I

v I

L .;t of Figures

i Ia r,' Page

. rip Mapping From G Onto G' 2-5

1-2. I-,,imi lismi. From R To 2-6

I , , mi orphic Finite-State Automata 2-7

". p.Bei t I eiween Two Homomorphic Automata 2-8

I ;i, am exalmple of a structured object 4-3

;. l. I f,,iiili•,tt graph for the relation daughter in terms of other relations . 4-6

;..'I. A - pimple proof tree for the query ?- daughter(yiscah,sarah) 4-6

I-,.- I II -i Vull Adder With Carry Lookahead 5-15

vii

List of Tables

"Table Page

4.1. Examples of PROLOG facts and their meanings 4-4

.1.2. Sample PROLOG Biblical family database 4-4

.1.3. Examples of well constructed PROI,(; facts and rules 4-7

4.1. Example of predecessor-2/2 using von-re!cursive programming 4,-8

E1.5. quivalent fornis of lists 1-9

1.6 . Example PROLOG for mnember/2, reverse/2., and length/2 4-10

-1.7. Misspelled variable resulting in singleton variable 4-13

1.8. lE;xample of the use of in disjunctions 4-14

1.9. Control ('onstrlicts in Quintus PROLOG 4-17

,1. 10. Coninion P ROLOG ýProcedures and Constructs1-18

5.1. Sparks's hInplementation of verify/1 5-2

.,2. Sparks's implenmentation of not/1 for Quintus PROLO.. 5-8

5.3. Improved implementation of not/i for Quintus P1izOtw. 5-9

5.1. Impleimentation of pseudo-logical negation for Quintus 1POItO(; .L.O 5-9

5.5. Opening Screen in AFIT VERIFY System 5-11

5. 6. Source Listing for load-in/1 5-13

5.7. Fxample of PRo[,o(; Diirectives and Facts In Module Definition File 5-1,4

5.8. Definition of Carry Out in Terms of Input Signals 5-19

5.9. l)efinition of Sum Bit S, in Terms of Input Signals 5- 19

viii

FIT/(; G CE/I"N G/ 1D)-0

A bst ract

The most widely used te'hnique for checking the correctness of digital circuit designs

is siml 1i oll. As the complexity of digital circuits has continued to grow, however,

circuit designers have become unable to perform complete simulations of their integrated

circuits. lormal hardware verification provides an alternative approach, performing a

series of mathematical proofs in order to si -w that the construction of the circuit from

its subm1iodules will result in the intended overall circuit behavior. Papers by Parrow

in 1983 and 1984 discuss a itRoOwG-based hierarchical formal circuit verification system

naamed VERIFIIY. AFITVERIFY, a, simple, experimental reverse-engineered version of

Barrow's VERIFY system, was produced by Captain Kevin Sparks in 1991. Since that

time, a ,tew user interface has been added to the AFITVERIFY system, as well as the

capability to maintain a central repository of standard, previously verified parts. This

thesis provides a detailed description of tlhe.-' a~nd other improvements that have seen

imade to Sparks's AFITVERIFY system.

ix

FORMAL VERIFICATION OF

D)IGITAL LOGIC

I. Introductioln

1.1 Background

In digital design, as in any design activity, the goal is to produce a final product

whlich ieets its specifications. Making sure that this goal is met can be difficult. As the

ulmber of components used in a digital integrated circuit (IC) continues to grow into the

millions, the ability to verify that circuit designs are correct becomes even more essential

and even more difficult [24:435]. There are a number of possible approaches to solving this

pro•)lem, including formal synthesis, exhaustive simulation, and formal verification.

Formal synthesis, or the automatic transformation of design specifications into a

fully realized design, is not yet practical. Exhaustive simulation, a common alternative

that is currently available to the system designer, falls prey to the sheer number of input

cofibinations required to perform this task. As an example, many ICs currently being

designed at A:'IT have 1,44 or more input pins. An IC with 144 input pins would require

at, leasl 21"" or 2.23 * 10:l different input combinations, and in some cases we would even

need to try at least every possible ordering of these input combinations, or (at a minimum)

2144! input sequences [11:6]. A simple device that multiplies two 16-bit integers would

require the testing of over four billion different inputs, and any circuit that contains a

single 32-bit register can have more than four billion different responses to any given input

vector [2:64]. Use of non-exhaustive simulation relies upon the skill of the designer and

the tester in selecting an appropriate set of input combinations, otherwise known as test

vectors, in a proper sequence. Such a simulation, however, will only result in confirmation

that the design is partially correct with respect to these particular test vectors [24:4353.

Formal verification provides a means of fully verifying systems through the application of

mathematical transformations. These transformations are used to produce a mathematical

proof that the realized design logically implies the original behavioral specification.

I-1

1.2 Problem Description.

This thesis will apply a strategy of hierarchical formal verification to the problem

of verification of digital circuits. As stated above, formal verification methods attempt

to demonstrate that a behavioral description derived from the high-level design of tile

physical realization of a circuit design logically implies the high-level behavior contained

in the original design specification, as represented in Equation (1.1).

Structurally-Derived Behavior -- * Specified Behavior. (1.1)

Previous formal verification systems, and specifically the AFITVERIFY system devel-

oped by Captain Kevin Sparks and discussed in Section 3.3.1, have all approached a subset

of this problem by proving the equivalence between these two behaviors [30], as represented

in Equation (1.2), rather than the logical implication shown above in Equation (1.1).

Structurally Derived Behavior - Specified Behavior. (1.2)

This approach, however, only covers a subclass of circuit designs. If the individual

specifying the behavior of a proposed system fully specifies the behavior under all input

conditions, the resulting st ructurally-derived (implementation) behavior will be isomorphic

to the specified behavior, as indicate(d in Equation (1.2). Hlowever, the individual specifying

the behavior of a. proposed system may instead list only a subset of input and output,

conditions, leaving the remainder as "don't care" conditions. These "don't care" conditions

may then be used by the system designer to make the resulting system smaller, faster,

or simpler than would be otherwise possible. The resulting implementation behavior,

however, is no longer isomorphic to the specified behavior, as indicated in Equation (1.1).

The use of "don't care" conditions in system design is common, and therefore a practical

formal verification system should ideally allow for verification between derived behaviors

and specified behaviors which are not necessarily isomorphic. Isomorphisms, as well as

other mathematical concepts, are discussed in more detail in Chapter II.

1.3 Assumptions

1.3. 1 Theory. It is assumed that the reader has a basic understanding of program-

muing in PROLO(G;. An ove(rvi('w of the PROLOG language is provided in Chapter IV, but

1-2

this overview is not intended to be complete or comprehensive. If further information

on the PROLOG language is required, either The Art of Prolog: Advanced Programming

Techniques [31] by Leon Sterling and Ehud Shapiro or Prolog Programming for Artificial

!ntelligcncc" [4] by Ivan Bratko are highly recommended. Additionally, the reader should

have a basic understanding of the theory of sets and algebras. A basic overview of

these topics is provided in Chapter II. If further information on these topics is required,

Introduction to Computer Thtory [6] by Daniel Cohen or Introduction to Automata Theory,

Languages, and Computation [19] by John Ilopcroft and Jeffrey Ullman are recommended.

1.3.2 Resources. This research did not require any special resources. UNIX-based

computer systems using Quintus PROLOG which were either currently available in the

AFIT School of Engineering or provided by the sponsor of this research, Microelectronics

Division, Electronic Technology Directorate, Wright Laboratory (WL/ELE), provided a

p)rogramming environment adequate to perform the research.

1.4 Scope

The scope of this thesis effort was limited by the amount of time available for program

development. This thesis effort included the following modifications and extensions to

AFITVERIFY:

"* Addition of the capability to store verified components in a standard cell library

"* Enhancement of the user interface, to include a menu-based system for user-to-

program interaction

"* Continued testing of the capabilities of the AFITrvERIFY system

"* Inclusion of new proof strategies into the AFITVERIFY framework

"* Insertion of additional components into the standard cell library.

In addition, an obviously crucial issue to the scope of this work is the meaning

of verification. Although this is discussed further later in this document, it is only

meaningful to discuss the verification of correctness relative to a specification. The rela-

tionship between a specification and its verification should ensure that an implementation

exceeds the minimum requirements stated in a specification [9:13-14]. Additionally, since

determining the validity of a logic expression is an NP-complete problem [24:435] and

answering non-trivial questions about digital circuit properties can be NP-hard (e.g..

1-3

requiring solutions that are at least exponential in complexity), it is imperative that a

verification methodology use a modular and hierarchical approach. A system is modular

when it can be described as a collection of modules with limited and well-defined interfaces.

These interfaces should be described such that the module can be connected into a larger

system without reference to its internal structure, thereby limiting the complexity of the

system. Hierarchical verification means that the specifications of modules at lower levels

of abstraction can be used as descriptions of modules at higher levels, thereby allowing the

task to be broken into smaller, more easily handled parts [9:13-14]. This thesis is concerned

exclusively with verification of modular, hierarchical digital systems.

1.5 Standards

Where practical, programs adhere to the appropriate international standards. This

was limited, however, by the lack of an international standard for the PROLOG language.

Most implementations of PROLOG, however, adhere to the so-called DEC-10 (otherwise

known as Edinburgh, or Clocksin and Mellish) syntax. As a result, the AFITNVERIFY

system was written so that it will fully use the facilities provided by Quintus PROLOG,

which uses this syntax. Most of the library calls in Quintus PROLOG are supplied with

source code. so they could be moved to other DEC-10 (Edinburgh) PROLOG compatible

environ ments.

1.6 A pproatch/Alathodology

This thesis effort has been based upon an ongoing analysis of the state of the

AFITVERIFY system. As this analysis effort progressed, new features were added and

errors were slowly eliminated. Since the PROLOG source code for the AFITVERIFY

system is highly interdependent, regression testing was required after all changes in order

to determine the ramifications upon the general operation of the system.

Major effort was put into improving the user interface, along with integrating a parts

library system into the AFITVERIFY framework. Extensive effort was also put into

coding a number of complex test circuits, many of which helped to identify flaws in the

PROLOG source code. In addition, some preliminary work in expanding the proof system

was accomplished, but was not integrated into the system due to lack of time. The resulting

version of AFITVERIFY is much more robust, well-documented, and extensively tested

than the version produced by Captain Kevin Sparks at the conclusion of his thesis effort.

1 -4

1. 7 Expected Benejits of This Research

The work described in this thesis is an expansion of past efforts to produce a hardware

verification tool for use by AFIT students and faculty. Once completed, AFITVERIFY

will allow VLSI designers to perform hardware verification upon portions of their de-

signs, thereby supplementing the SPICE and VHDL simulations of these designs. As the

AFITNERIFY system does not currently deal with temporal dependencies, the need

for simulations will not be entirely eliminated, but the reliance upon them will be greatly

diminished.

1.8 C(hapter Summary and Thesis Overview

Chapter II contains a brief explanation of some of the mathematical theory and

terms used elsewhere in the thesis. Chapter III consists of a literature review of relevant

work. Some significant systems developed by other researchers are discussed, as well

as the previous work performed at AFIT. Chapter IV provides an introduction to the

PROLOG language used in developing the AFITVERIFY system. Chapter V discusses

the evolution of AFITVERIFY, and Chapter VI summarizes the results of this research,

along with recommendations for further work. Program source code and sample program

runs are provided in the appendices.

1-5

H. Mathematical Theory And Concepts

2.1 Introduction

2.1.1 Problem Description. As previously discussed in Chapter I, this thesis applies

a strategy of hierarchical formal verification to the problem of verification of digital circuits.

This strategy attempts to demonstrate that a system-level behavioral description derived

from the modular realization of a circuit design logically implies the high-level behavior

contained in the original overall design specification for that system, as represented in

Equation (2.1).

Structurally- Derived Behavior - Specified Behavior. (2.1)

Many formal verification systems have approached a subset of this problem by proving the

equivalence between these two behaviors, as represented in Equation (2.2), rather than the

logical implication shown above in Equation (2.1).

Structurally-Derived Behavior •-- Specified Behavior. (2.2)

The approach described by Equation (2.2), however, only covers a subclass of the

problem presented in Equation (2.1). As shown below in Section 2.2.4, Equation (2.2)

describes an isomorphic relationship between the system's specified behavior and its struc-

turally derived behavior. Equation (2.1), however, describes a more general homomorphic

relationship (discussed further in Section 2.2.3) between the system's specified behavior

and its structurally derived behavior.

If the individual specifying the overall behavior of a proposed system fully specifies its

behavior under all input conditions, the resulting structurally-derived (implementation) be-

havior should be isomorphic to the specified behavior. However, if the individual specifying

the behavior of a proposed system instead lists only a subset of input and output conditions,

leaving the remainder as "don't care" conditions, then these "don't care" conditions may

then be used by the system designer to make the resulting system smaller, faster, or simpler

than would be otherwise possible. The resulting implementation behavior, however, is no

longer isomorphic to the specified behavior. The use of "don't care" conditions in the

2-1

design of large integrated circuits is common, and therefore a practical formal verification

system should allow for verification between structurally derived behaviors and specified

behaviors which are not necessarily isomorphic.

2.2 Sets and Mappings

2.2. 1 Many-Scrted Algebras.

Definition 1 A many-sorted algebra is a seven-tuple

(S,a , N,3, ,- G) (2.3)

where S is the set of sorts; E is the class of all signature sets A,; the set D is the class of

a/l carrier sets; /3 is a mapping from S to 4, ,3: S '-* 4; a is the mapping a: S* x S '-4 E;

G is the set consisting of all operators; and -/ maps the symbols contained in the union of

the signature sets into G:

-: U [-G (2.4)
S°× • .2 3~

such that for each T E .. "y(a) E A3, and for

UEZ (2.51)
S1 32 .. S.,,3

y((a): A, x A,, x ... x A3, , A, [10: 398]. (2.6)

In the case of finite-state automata, discussed below in Section 2.3, three distinct

sorts are employed: states, inputs, and outputs. Thus, in this case,

S = {states, inputs, outputs}. (2.7)

A signature set, denoted by

(2.8)

2-2

contains the names of the operators with n inputs of types S1, s2,. . ., s,, and output of type

s. In a finite-state automaton, some of the non-empty signature sets include [10:392-393]:

S= {transition function} (2.9)

state input state, output

S = {final} (2.10)
state, output

S = {initial} (2.11)
c.state

It should be noted that a Boolean algebra is a many-sorted algebra. In this case,

there is one carrier set Aelements,, five sorts

E - {Supremum} (2.12)

element element, element

E = {Infinum} (2.13)

element element, element

S = {Complement} (2.14)

element, element

E = {One, Zero} (2.15)

e, element

and set of operators G is {Complement, Supremum, Infinum} [10:394].

2.2.2 Mappings. The idea of a mapping (or function) is common to many branches

of mathematics. A mapping is defined in Definition 2.

Definition 2 .4 mapping 0 from a set X to a set Y is a rule or procedure that assigns

each element x of X to a unique element y of Y. The element y of Y assigned to a given

x, of X is called the image of x under 0 and is denoted by O(x) [18:127].

Definition 3 Let 0 be a mapping from X to Y. Then X is the domain and Y is the

codomain of 9. The image set of 0 is the subset of Y consisting of the images y of all

the elements x of X [18:127].

2-3

When discussing a mapping 0 from X to Y, this mapping can be represented by a

number of forms. The expression
S: X ý-Y (2.16)

is commonly used to express the concept that "0 maps X to Y."

Definition 4 Let 0 be a mapping such that distinct elements x, and x2 of the domain

always have distinct images O(x1) and O(x2); that is, let x, 0 X2 imply O(xl) 4 O(x2).

Then 0 is said to be an injection, or an injective mapping [18:130].

An injection is also called a one-to-one mapping from X to Y [18:131].

Definition 5 If the image set of a mapping 0 from X to Y is the same set as the codomain

Y, the mapping is said to be surjective, or a surjection [18:131].

Definition 6 A mapping that is both injective and surjective is said to be bijective, or a

bijection [18:131].

A surjection may be called a mapping from X onto Y, or an onto mapping. A

bijection from X to Y is also referred to as a one-to-one correspondence between X and

V, or a one-to-one mapping from X onto Y [18:132].

2.2.3 Homomorphisms. A homoniorphism is defined in Definition 7, where a many-

sorted algebra is in Section 2.2.1.

Definition 7 A mapping 0 from a many-sorted algebra G to another many-sorted algebra

G' with

O(ab) O(a)O(b) for all a and b in G (2.17)

is a homomorphism from G to G' [18:135][10:414].

It is important to note that the property of homomorphisms given in Equation (2.17)

preserves the structure and operations between the elements of X when they are mapped

into Y [10:414]. Thus, if a is a unary operation that is defined in both X and Y with

a(xI) = x2 , then a(O(xl)) =(x 2), and if p is a binary operation in both X and Y with

p(x 1 ,x 2) = x 3 , then p(O(x IO(x 2)) = p(x 3) (18:135].

2-4

a b c d e f

Figure 2.1. Surjective Mapping From G Onto G' [18:129]

Thus, a homomorphism provides a relationship between two algebras, preserving

some set of operations on the algebras, but without the restriction that this relationship

be an injection. A homomorphism from X to Y is therefore not necessarily an invertible

operation, as some of the information contained in X may be "lost" in Y. The surjective

mapping from G onto G' shown in Figure 2.1 shows how set G can be mapped onto set G,

but there is no function that maps G' onto G. This will also be seen in the homomorphism

showii in Figure 2.,A in Section 2.3.

2.2.4 Isomorphisms. An isomorphism is a type of homomorphism, and is formally

dlefined as follows:

Definition 8 A bijective homomorphism is called an isomorphism; that is, an isom or-

phism frout G to G' is a bijection 0 such that 0(ab) = 0(a)O(b) for all a and b in G [18:135].

An isomorphism therefore possesses all of the properties of a homomorphism, as

(liscussed in Section 2.2.3, but with certain added restrictions. Since an isomorphismn is

a bijection, it provides a one-to-one correspondence between the two algebras. Thus, an

isomorphism provides a relabeling between the states and transitions (operations) in one

algebra and another. Figure 2.2 shows an example of an isomorphism between the real

numbers R and the positive real utimbers R+ given by 0(r) = 2' [18:130]. A reverse

mapping A can be found to map R+ back to R, namely A(r') = (logr')/(log2).

2-5

x

y IL Lr Lr"r

-2 -10 1 2 3

0 1 2 3 4 5 6 7 8

Figure 2.2. Isomorphism From R To R+ [18:130]

2.3 Finite-State Automata

A finite-state automaton (FSA) is a particular variety of finite-state machine, as

shown in Definition 9 [21:318].

Definition 9 A finite-state automaton A = (E,S,6,A,o *) is a finite state machine

with a finite set E of input symbols, a finite set S of states, a next-state function 6

E x S F-. S, a subset A C S of accepting states, and an initial state a* C S [2!:316-317].

Stated otherwise, a FA is a collection of three things:

I. A finite set of states S, one of which is designated as the initial state or', called

the start state, and some (maybe none) of which are designated as final (accepting)

states in set A.

2. An alphabet E of possible input letters, from which are formed strings, that are to

be read one letter at a time.

3. A finite set of transitions 6 that tell, for each state and a given letter of the input

alphabet, which state to go to next [6:65].

When a string is input to a FSA, it will end at either an accepting state or a

nonaccepting state. If the string ends at an accepting state, we say that the string is

acceptcd by the FSA [21:318].

A nondeterministic finite-state automaton (NDFSA), defined in Definition 10, is

similar to the FSA discussed above. In the NDFSA, however, the next-state function 6

(toes not necessarily take us to a uniquely defined state, as would the FSA [21:335]. A

string is accepted by a NDFSA if the string can follow any path from the initial state

2-6

0

(a) First, Finite-State Automaton

2
N

a a

(I,) Second Finite-State Autoniaton

Figure 2.3. Hfomomorphic Finite-State Automata [10:419-421]

to an accepting state [21:336]. However, it canl be shown (though application of Kleene's

'Theorem) that any NI)FSA -anl be represented by an equivalent FSA, and thus, both are of

equal power [6:145]. Thus, although there is an important distinction between NDFSA and

FSA, this distinction can generally be ignored in all further discussion in this document.

Definition 10 A nondeterministic finite-state automaton A =()Z,S,6,.A,&') is a

finite .state machine with a finite set E of input symbols, a finite ,setS$ of states, a next-state

function tS : E x S_ '-,P(S), a subset .A C S of acceptinq states, and an initial state

a" * S [21:334-.325J.

2-7

I1 12 S1 S 2

Figure 2.4. Mapping Between Two tfomomorphic Automata 110:420]

Since a FSA is a variety of finite-state machine, and thereby symbolizes a set of

inter-relationships (transitions) between its elements (states), we can see that the FSA can

represent the ele•nents and operations associated with a algebra, as defined in Section 2.2.1.

As a result, we can define a homomorphism between one FSA and another. We can show,

for example, that there is a, homomorphism between the FSA shown in l igure 2.3(a) and

that shown in Figure 2.3(b). If we use the mappings shown in Figure 2.4, it can be easily

seen that tle relationships shown in the FSA in Figure 2.3(a) have been preserved in

the U'SA in Figure 2.3(b) [10:420-421]. Similarly, isomorphisIns can be defined between

i"SAs. In this case, as in all isomorphisms. the mapping between the FSAs is reduced to

an ixerc'ise in relabeling the states and transitions.

liqinit e-state autoniat, are commonly used to model the behavior of simple compu-

tational processes. In the mathematical study of finite automata, it has been shown that

all deterministic finite-state automata (FSA) (and, for that matter, all non-deterministic

finite-stale automata (NI)FSA)) induce a right invariant equivalence relation R on their

set, of input strings 1i[19:6,5- 71]. This is demonstrated by Theorem 1, the Myhill-Nerode

Theorem. (The proof of this theorem is omitted from this document, but can be found in

the text by Ilopcroft and ITllman [19:65-66].)

Theorem 1 (Myhill-Nerode Theorem) The following three statements are equivalent:

I. The set L C E" is accepted by some finite-state automaton.

2. L is the union of some of the quiralence classes of a right invariant equivalence

rclation of finite index.

2-8

3. Let (quiralc n(e r(mution]?L be defined by: xRL y if and only if for all z in V*, xz is

in L fxaeIly wvhen yz is in L. then]?L is of finite index [19:65-661.

Theorem I can be shown to have, among other consequences, the implication that

there is an essentially unique minimum-state FSA for every regular set, as shown in

Theorem 2.

Theorem 2 ihe minimunt state automaton accepting a set L is unique up to an isomor-

phisrn (i.e., a renaming of the states)[19:67].

Thus, if we are able to represent the behaviors of our modules as finite akitornata,

then we should be able to apply Theorems 1 and 2 in order to produce the minimal

forms of these automata. The application of isomorphic verification techniques, such as

those currently used in the AFITVERIFY system, could then be used to prove the

v(,uivalence between the structural and behavior di specifications. If pure equivalence is

not demonstrated, other mathematical techniques could be used to check for the logical

implication of lhe behavioral specification from the structural specification.

2-9

III. Literature Review

3. I IntroductioL'I

As discussed in Chapter I, a goal of the digital circuit design process is to produce a

description of an integrated circuit (IC) whose operation meets its specifications. Making

sure that this goal is met can be difficult. As the number of components used in digital

ICs continues to grow, the ability to verify the correctness of circuit designs against their

specifications becones even more essential and even more difficult.

One must also be careful to understand what is meant when a circuit has been

"'verified." Ideally. the goal of verification is to prove that a physical circuit correctly

implements its intended behavior under all circumstances. In reality, however, we can not

eveln attempt this task, as we can not apply logical reasoning to either chips or intentions.

"The intended behavior rests in the mind of the architects and is not itself
accessible. It can be reported in a formal language, but not with checkable
accuracy. At the same time, a material device can only be observed and
measured, not verified. It can be described in an abstracted way, and the
siniplified description verified, but again, there is no way to assure the accuracy
of the descri ption [8:9]."

Thls, t le(, Verification process involves the comparison and manipulation of two or more

models of a circuit, where each of these models is a (possibly imperfect) representation

of the either the intended design oi the final physical realization [8:9]. The realization

that these models are merely (imperfect) representations of the real world is especially

imp)ortant when working with "critical systems" whose improper function may result in

loss of life or compromise of national security interests. It is important to understand,

however, that the fact that a system has been verified in no way insures that this system

is safe or that it functions properly under all conditions. It is inherently impossible to

al)ply the certainty of mathematical truths to the analysis of models of objects in the real

world [114:223].

3.2 Early Iesearch

3.2.1 Barrowus VERIFY System. Barrow describes VERIFY, a Prolog system for

using forial verification to ensure the correctness of digital designs [3:437]. In many ways,

3- 1

the creation of a VERIFY-like system seems to have become the Holy Grail of formal

hardware verification. Many subsequent digital hardware verification systems have been

based, to a large degree, upon Barrow's description of VERIFY, even though the actual

code for the VERIFY system was not included in the text of his article.

Barrow's VERIFY system is based upon the procedure of deriving a behavior from

the structural description of a digital system and then comparing that derived behavior to

a specified behavioral description for the system. If the two behaviors can be shown

to be equivalent, then the structure has been verified to correspond to the specified

behavior [3:439]. The key principle used is that, given the behaviors of the components of a

system and their interconnections, it is possible to derive a description of the behavior of the

overall system, which may then be compared with the original system specifications [1:171.

VERIFY is implemented in PROLOG [3:440] and makes use of the pattern matching

abilities of this computer language.

A hardware design in VERIFY consists of a collection of modules that are connected

together hierarchically and ultimately constructed from a small set of primitive circuit

elements whose structure implicitly defines their behavior. Each module is described as

a finite-state machine possessing input ports, output ports, and internal state variables,

each having a specified signal type. The behavior of the module is described by two sets

of equations defining the output signals (in terms of the input signals and the current

state variables), and the new internal states (in terms of the inputs and the current

state variables) [2:65]. When VERIFY examines a module for verification, the module is

recursively decomposed into its constituent submodules, each of which is turn subjected

to verification, thereby deriving an internal representation of the behavior implied by the

entire structural description [3:445-446]. VERIFY then attempts to prove an equivalence

between the derived behavior and the specified behavior.

VERIFY is designed to take an "intelligent" approach to the verification process.

Before any actual verification is accomplished, a series of basic design checks is run on

the module to ensure syntactic correctness [3:449]. Once all of the design checks have

been passed, the derived behavioral description is obtained by gathering together all of the

component behavioral equations. The combined set of all these equations is manipulated

algebraically in order to produce an equation which provides an overall derived behavioral

description of the system. The derivation of this equation is greatly simplified by not

permitting loops in the design, unless they are broken by a state variable, as specified by

the Mea.d-Coiiway circuit design methodology [2:66]. Now that VERIFY possesses both

3-2

a structurally-derived behavior and a specified behavior, it attempts to prove that the two

are equivalent [3:451-467]. The most basic case occurs when the two finite-state machines

being compared are identical. This case is not as simple as it may seem, as mathematical

knowledge of the relationships in the particular system may be required to perform this

proof. However, Barrow found that it was possible to write rule for the most commonly

occurring situations. In these cases, VERIFY can prove the equivalence between the

two isomorphic equations (exact equivalence). In more complex cases, however, the cor-

respondence between the finite-state machine for the structurally-derived behavior and

that for the specified behavior may be a homomorphism. These homomorphisms be either

structural (when the two machines are effectively functionally identical, but constructed

differently) or behavioral (when the two finite-state machines represent two views of a

single state-machine, but viewed with different time-scales). VERIFY was designed to

handle certain behavioral homomorphisms. Since structural homomorphisms can require

in-depth knowledge of the required transformation, however, VERIFY was not designed

to prove equivalence between structural homomorphisms [3:451-452].

3.2.2 A Correct By Construction IC Design System. Grabowiecki et al. discuss

the development of a PROLOG and Turbo-Pascal based environment for the structured

design of Very Large Scale Integration (VLSI) integrated circuit systems. This environment

presents the user of an IBM PC/XT system with four major subsystems (a text editor, a

VLSI floorplan editor, a VLSI layout editor, and a verification program), as well as access

to a number of system libraries for predefined PROLOG functions and VLSI standard cells.

The floorplan editor is used to create and refine hierarchical dcsigns for integrated circuits,

allowing the designer to refine the structure and overall floorplan of the IC as it evolves.

The layout editor provides the designer with a method of specifying the structure and

geometry of the physical design elements of the IC [15:37]. The verification program,

however, is the main focus of this review.

The verification program used in their environment is written in PROLOG and is

strongly based upon the pioneering work of Barrow [3]. It is tightly integrated into

the entire development environment, enabling an overall top-down design process. Each

module is composed of a number of submodules, each of which may, in turn, be composed of

other submodules. Modules which are simple enough to define thiwr own layout are labeled

leaf cells; these are the primitive elements for the various subsystems of the development

environment. When designing a system, the user defines a structure and floorplan for

,ach module., reiterating this process as the module is hierarchically decomposed into its

3-3

constituent submodules [15:37-38]. The structure of a module is thereby determined by

the interconnections of its submodules.

Grabowiecki's design process follows an iterative path. Behavioral specifications and

structural specifications are hierarchically decomposed, with verification between the two

occurring at each level of decomposition. If discrepancies are detected, the user is directed

to correct them. If none is found, the user is allowed to continue the decomposition, possibly

until the system has been decomposed into a collection of leaf cells. This lowest-level

hierarchical description of the system is then fed to the layout editor for placement and

further refinement [15:38].

The verification subsystem models every module as a finite-state machine with input-

vector x, output-vector z, and state-vector y. The outputs and state variables are defined

by the eeuati,,ns

z(n) = f(x(n),y(n)) (3.1)

y(n+ 1) = g(x(n),y(n)). (3.2)

In this notation, x(n) represents the value of input-vector x at discrete time n, and x(n+ 1)

its value at the successive clock time, n + 1. Although this representation may not be

convenient for the circuit designer, it provides a uniform method for specifying the behavior

of all digital systems of interest to the authors [15:391.

The proof of equivalence between the specified and derived behaviors is the heart of

the verification subsystem. This equivalence may take the form of either an isomorphism

or a homomorphism. This system concentrates upon the identification of isomorphisms

rather than performing the more complex identification of homomorphisms between the

two input sets [15:40-41]. This verification subsystem, however, is intrinsically limited

by the implementation decision to provide verification only for systems which can be

transformed into isomorphic pairs. Regardless of this limitation, however, the overall

design environment appears to be outstanding. Research at AFIT should ideally aim at

producing such an integrated design environment.

3.2.3 The VERDIS Environment for Design Verification. Brezocnik et al. discuss

VERDIS, a PROLOG-based system for formal verification which applies rigorous formal

mathematical methods to a hierarchically organized description of a digital system [5:100].

3-4

The digital system is internally modeled as a finite-state machine A = {X, Z, Y, 6, A}, where

X and Z are input and output states, respectively, and Y represents a finite set of internal

states. The functions b and A ar, the mappings

b: X X Y - Y (3.3)

A:XXY x Z (3.4)

that define the successor internal state and present output signal, respectively, as functions

of the current input signal and the current state. VERDIS provides a library of arithmetic,

logical, control (if, case), and "special" (fetch, store, joinfn) functions which can be used

in composing the 6 and A functions. All of these functions, however, are actually written

using PROLOG [5:101].

The VERDIS system provides a structured format for the description of a system.

Each non-primitive module is given a specification (which describes the intended behavior

of the module) and an implementation (which describes the construction of the module

from more primitive modules). Gate-level primitive modules such as inverter, nor-gate,

nand-gate are provided in a system library. VERDIS takes full advantage of the declarative

syntax of PROLOG, allowing the specification of N-bit components [5:101-102].

VERDIS, like the other hardware verification systems discussed, is based upon the

principle that, given the behavior and interconnections of component modules, it is possible

to derive a behavioral description of an entire module. This derived behavior is then

compared to the specified behavior. This system will identify errors of design, but obviously

does not address errors in specification [5:102]. (The designer is free, as always, to specify

the wrong system and then implement it - in fact, this seems to happen quite often

in military systems!) VERDIS performs some basic consistency checks upon the system

before performing the actual verification [5:103]. However, the verification process itself

centers around the strategies used in performing the formal proof of equivalence between

the specification and the implementation.

VERDIS implements a number of different strategies for proving behavioral and

structural equivalence. As in the reviewed articles by Barrow [3] and Grabowiecki [15],

VERDIS currently only deals with isomorphic equivalences between the two equations.

The authors state that the majority of verification problems can be manipulated so that

they yield isomorphic transformations [5:103]. Additional functionality could be added to

3-5

a VERDIS-like verification system by allowing the correspondence between automata to

be a structural or temporal homomorphism. Continuing work at AFIT should proceed

along these lines, as there are many circuits which can only be verified by means of

hoiiornorphibms. The VERDIS sybteim proves that the derived and specified behaviors

are equivalent by forming an equation between the specified and derived behaviors, and

then demonstrating that this equation is an identity for each output and each internal state.

This equation is first examined to see if it forms a trivial identity (or trivial non-identity).

If the equation is non-trivial, a verification strategy is then selected by the user [5:103]. An

interactive interface, such as that provided by VERDIS, along with the additional feature

that the user be able to enter new verification strategies, is a worthwhile goal for my

hardware verification system.

3.3 Recent Work at AFIT

3.3.1 The AFITVERIFY System. This system, described in the thesis written

by Capt Kevin Sparks, is a prototype reverse-engineered version of Barrow's VERIFY pro-

grain [3]. AFITVERIFY was written in PROLOG and attempts to determine if supplied

structural and behavioral descriptions o; a logic circuit are equivalent. Development was

relatively successful, and Sparks was able to successfully verify two examples, an integer

counter and a full-adder, that are described in Barrow's article [30:Ch 5, 1].

AFITVERIFY was initially implemented on an IBM PC/AT compatible system

using PROLOG-1, but was later moved to a MicroVax using Quintus PROLOG due to

the inherent limitations of PROLOG-1. The construction of the full-adder from 11 prim-

itive (NAND) gates in two hierarchical levels using 30 inter-cell connections exceeded

the memory capacity of PROLOG-1, necessitating the use of Quintus PROLOG. The

Quintus PROLOG version provided between a. 5X and 15X speedup when compared to

the PROLOG-1 version, as well as allowing the verification of the full-adder [30:Ch 5, 2].

While Sparks's AFITVERIFY is only a small prototype system, it successfully

(lemonstrates the ability to verify small circuits. A number of additional features, such as

the ability to save a library of previously verified cells, to input VHDL input files directly

into the AFITVERIFY environment, and to have an effective user interface, need to be

added to the program in order to make it more suitable for practical use [30:Ch 5, 3].

3-6

3.4 Conclusions

Formal verification appears to be both reasonable and necessary in an approach to

the problems inherent in VLSI circuit design. A number of systems have been designed

over the past seven years, with much of the major work being based upon the pioneering

research of Barrow [3]. Recent work at AFIT by Sparks [30] has attempted to adapt this

methodology to the needs of the AFIT VLSI community. Continued research is necessary

in order to develop Sparks's AFITVERIFY system into a fully functional tool for formal

verification of complex VLSI circuit designs.

3-7

IV. Introduction to PROLOG

PROLOG and Lisp are the two primary languages for Artificial Intelligence pro-

gramming. As in the Middle Ages, when knowledge of Latin and Greek was essential

for all scholars, today's practitioners of Artificial Intelligence must be comfortable with

both of these languages [4:vii]. Lisp is a functional programming language, concerned

with specifying the "how" of a program. Prolog, on the other hand, is a relational, or

declarative, language, concerned with describing the "what" of a program by identifying

the relationships between pieces of knowledge. As a result, PROLOG is much more suited

to the task of hierarchical verification than Lisp, as this task draws heavily upon PROLOG's

goal-driven backward-chaining approach and its pattern-matching relational abilities.

4.1 Development of PROLOG

PROLOG is short for Programmation en Logique, or Programming in Logic [23:38]. In

the early 1970s, Robert Kowalski (University of Edinburgh), Alain Colmerauer (University

of Marseille-Aix), and Maarten van Emden (University of Edinburgh) provided the initial

work on PROLOG, developing its theoretical foundations and providing an initial experi-

mental demonstration of its features [4:xi]. Colmerauer's interest was in natural language

processing, while Kowalski's was in logic and theorem-proving [7:261.

Kowalski was developing the concept of logic programming, where a declarative

statement of the form

P if Q and R and S (4.1)

could be interpreted as the statement

To solve P, solve Q and R and S (4.2)

and then solved using procedural techniques [31:xi]. Since Equation (4.1) is a Horn clause

(discussed further in Section 4.2), Kowalski showed that any first-order predicate-logic

statement that can be represented as a set of Horn clauses can be executed as a set of

procedures of a recursive programming language using the form of Equation (4.2).

At the same time that Kowalski was doing his work, Colmerauer and his colleagues

Henri Meloni and Gerard Battani developed a specialized theorem prover written in Fortran

4-1

on an IBM platform [31:xi]. This theorem prover, named PROLOG, embodied Kowalski's

procedural interpretation of logic programming. Van Emden and Kowalski later developed

formal semantics for the language of logic programs, showing that the operational and

model-theoretic semantics were equivalent [31:xxi].

These previous successes led David H.D. Warren of the University of Edinburgh

to develop an implementation of PROLOG running on a DECsystem-10 during the mid

1970s [4:xi]. The PROLOG-10 compiler was highly efficient, dispelling many of the myths

that had built up concerning the impracticality of logic programming. This compiler, which

was itself almost entirely written in PROLOG, showed list-processing performance compa-

rable to that of the best Lisp systems of the time and showed that classical programming,

as well as Artificial Intelligence, can benefit from the use of logic programming techniques.

As a result, the Edinburgh PROLOG standard that resulted has become a defacto standard

for the PROLOG language [31:xxii] and has led to the present popularity of the language.

PROLOG is currently available for MS-DOS, Amiga, Unix, VAX/VMS, Macintosh, and

other environments.

4.2 PROLOG Syntax

PROLOG represents knowledge as first-order predicate logic written in Horn clause

form [4:61]. A Horn clause is a logical implication with no more than a single atom as

a consequent, where an atom represents some indivisible concept. A Horn clause can be

represented as

C -== A1 A A2 A ... A A,. (4.3)

Use of the Horn clause form of first-order predicate logic allows PROLOG to perform a proof

by refutation of user-supplied theorems through the application of Robinson's Resolution

Principle [29].

4.2.1 Basic Structures. PROLOG has three basic statement, or clause, types: facts,

rules, and queries. All three are constructed from PROLOG's single data type, the logical

term [31:2] and must end in a period. Terms come in three forms: the constant, the variable,

and the structure. Constants are either atoms or numbers, where an atom is any sequence

of alphanumeric characters that either begins in a lowercase letter or is enclosed in single

quotes [4:30]. Variables are represented by a sequence of alphanumeric characters that

begins with either an underscore character or an uppercase letter. Anonymous variables

4-2

date date (12, december, 1991)

12 december 1991 functor arguments or
components

(a) (b)

Figure 4.1. Date as an example of a structured object: (a) represented as a tree; (b) as
it is written in PROLOG [4:33].

represent "don't care" conditions in the execution of a clause. Edinburgh PROLOG imple-

mentations traditionally represent anonymous variables by using the underscore character

('-') as the variable name [31:199]. Thus, an anonymous variable can be used whenever

the particular value of the variable does not matter, but the existence of some instantiated

value is necessary. The lexical scope of all variables is one clause [4:33], and all instances

of anonymous variables are considered to be unique.

Structur•s are objects which contain other components, which may themselves be

structures. For example, a date can be viewed as a structure with three components: day,

month, and year. In order to treat a structure as a single object, we identify it by an

atom, called the principal functor, whose arguments are the component terms. In our

example, the functor date would express a relationship between the day, month, and year

components [4:33]. The structure is viewed by PROLOG as a tree, where the root is the

functor and each child is a component, which may be a subtree if the component is also

a structure [4:34]. An example of this is shown in Figure 4.1. Functors are commonly

referred to by their name and arity (the number of arguments). Thus, in our example, we

have defined the structure of the functor date/3.

The simplest type of PROLOG clause is the fact. Facts state relationships among

objects [31:2], announcing that the given relationship is true. Some examples of facts are

shown in Table 4.1. A finite set of facts can constitute the simplest form of a PROLOG

program. Table 4.2 provides a sample program that will be used in this section [31:3].

4-3

PROLOG fact Interpretation of the PROLOG fact

father(abraham,isaac). Abraham is the father of Isaac
mother(sarah,isaac). Sarah is the mother of Isaac
plus(0,0,0). 0 + 0 0
plus(I,1,2). 1 + 1 2
plus(I,3,4). 1 + 3 =4

primitive-component(nand). A NAND gate is a primitive

component
course(csce756,1600-hrs). CSCE 756 is scheduled at

1600 hours
triangle(point(1,1),point(1,2),point(2,3)). A triangle containing the

points (1,1),(1,2),(1,3)

Table 4.1. Examples of PROLOG facts and their meanings.

father(terach ,abraham). male(terach).
father(terach,nachor). male(abraham).
fat her(terach,haran). male(nachor).
father(abraham,isaac). male(haran).

father(haran,lot). male(lot).
fat her(haran,milcah). male(isaac).

father(haran,yiscah). female(sarah).
mother(sarah,isaac). female(milcah).

female(yiscah).

Table 4.2. Sample PROLOG Biblical family database [31:3]

A rulc specifies things that are true if some other condition in the database is

satisfied [4:10]. Thus, rules allow us to define new relationships in term of previously

existing relationships. Rules are given by statements of the form

A - B1, X . , - (4.4)

where n > 0. A is known as the head of the rule, and the Bi's are known as the goals,

or the body, of the rule. In the case when n = 0, the rule degenerates into a fact [31:8-9].

Adjacent goals may be separated by a comma (','), representing a logical AND, or a

semicolon (';'), representing a logical OR. PROLOG uses the symbol :- to represent the

4-4

Sshown in Equation (4.4). Thus, a rule [31:9] such as

grandfather(X,Y) - father(X,Z), father(Z,Y) (4.5)

would be written instead [4:11] as

grandfather(X,Y) father(X,Z), father(Z,Y). (4.6)

head body

when entered as part of a PROLOG program. Thus, a PROLOG program consists of a finite

set of facts and rules. Since the set of facts and rules in the program can change as the

program executes, the current set of facts and rules at any time is often referred to as

working memory or the PROLOG database.

Since the head of a rule is a structure, rules (and thereby facts) are also classified

by their name and arity. In Equation (4.6), we have defined the functor grandfather/2,

and in Table 4.1, we have defined the functors father/2, mother/2, plus/3, course/2 ,

primitive-component/1, point/2, and triangle/3. When a rule is written as multiple

clauses with the same principal functor and arity, as is predecessor/2 in Table 4.3, then

tile PlROLOG interpreter performs a logical AND of the clauses, resulting in the same

outcome as if they were written in a single clause with the various clause bodies separated

by semicolIons.

A query is a means of retrieving information from a program by asking whether a

given relationship exists among a collection of objects. Queries are answered by comparing

the query to the information (rules and facts) currently stored in the database, and can thus

he viewed as proposed facts whose validity is to be tested against the database. Queries

are usually supplied to the prompt of the runtime PROLOG interpreter, and are typically

written in the form given by

?- mother(sarah,isaac). (4.7)

Thus, for the information shown in Table 4.2, the queries male(lot)? and father(haran,lot)?

can be matched against informaticii in the database and will return the answer yes. The

queries rnole(s•rrah)? and mother(abraham,isaac)? will return the answer 7io, as this

.1-5

female
x

mother

," daughter

Figure 4.2. Definition graph for the relation daughter in terms of other relations

daughter(yiscah,sarah)

rnother(sarah,yiscah) female(yiscah)

Figure 4.3. A simple proof tree for the query ?- daughter(yiscah,sarah)

information can not be found as a fact in the database or deduced from any rules in the

database [31:3-4].

-1.2.2 Simple Examples of PROLOG Code. After adding the rule

daughter(X,Y) :- mother(Y,X), female(X). (4.8)

to the database shown in 'Table 4.2 [31:13], one can then ask the query

?- daughter(yiscah,sarah). (4.9)

4-6

s,:ter(X,Y) /* For any X and Y, X is a sister ef Y */
female(X), /* (1) X is femal/
parent(Z,X), /* (2) both X and Y have the same
parent(Z,Y), parent, Z */
X \== Y. /* (3) X and Y are different people. */

mother(X) :- /* Any person X is a mother if she is */
mother(X,_Y). /* the mother of some child _Y.

predecessor(X,Z) /* Person X is an ancestral predecessor */
parent(X,Z). /* of Z if X is a parent of Z.

predecessor(X,Z) /* Person X is an ancestral predecessor */
parent(X,Y), /* of Z if X was the parent of Y, who */
predecessor(Y,Z). /* is an ancestral predecessor of Z. */

gcd(X,X,X). /* Greatest common divisor (gcd) of */

/* any number X with itself is X.
gcd(X,Y,D) /* To find gcd, D, of any X and Y, if */

X < Y, /* X < Y, compute the new value of
Y1 is Y - X, /* YI=Y-X, and then compute the
gcd(X,Y1,D). /* gcd of X and Y1.

gcd(X,Y,D) /* To find gcd. D, of any X and Y, if */
X > Y, /* X > Y, compute the new value
X1 is X - Y, /* of Xl=X-Y, and then compute the
gcd(Xl,Y,D). /* gcd of Xl and Y.

Table 4.3. Examples of well constructed PROLOG facts and rules

This causes a search of the current PROLOG database, in order, from the first clause to

the last. Since there are no facts referring to the functor daughter/2, PROLOG can not

find a solution to the query by direct examination. However, the search of the database

locates the rule shown in (4.8), which has two goals, niother(Y.X) and female (X), where

the variables Y and X are unified with sarah and yiscah, respectively. The database is then

searched for motlher(sarah,viscah). This existential query is confirmed by a matching fact

iii the database. PROLOG then attempts to prove female(yiscah), which is also confirmed

by a fact in the database. Since all of the goals associated with the body of (4.8) have been

successfully proved, PROLOc; then concludes that the head is true, returning the answer yes

to the user [4:11]. The rule shown in (4.8) can be represented by a definition grap'% [4:12],

as shown in Figure 4.2, and the proof tree for the query discussed above [31:14] is shown

in Figure 41.3.

4-7

predecessor_2(X,Z) /* A person X is an ancestral
parent(X,Z). /* predecessor of Z if X is a parent */

/* of Z.

predecessor_2(X,Z) /* A person X is an ancestral
parent(X,Y), /* predecessor of Z if X was the
parent(Y,Z). /* parent of Y, who is a parent of Z. */

predecessor_2(X,Z) /* A person X is an ancestral
parent(X,A), /* predecessor of Z if X was the */
parent(A,Y), /* parent of A, who is a parent of Y, */
parent(Y,Z). /* who is a parent of Z.

predecessor_2(X,Z) /* A person X is an ancestral
parent(X,A), /* predecessor of Z if X was the
parent(A,B), /* parent of A, who is a parent of B, */
parent(E,Y), /* who is a parent of Y, who is a
parent(Y,Z). /* parent of Z.

et cetera

Table 4.4. Example of predecessor_2/2 using non-recursive programming [4:15]

In general, the meaning of a PROLOG rule should be very easy to understand, as long

as the programmer obeys a general set of style guidelines. Functors should have meaningful

names: the body of the rule shothld be indented with respect to the head; only one functor

should be written on a line; comments (delimited by the character pairs /* and */, or all

text from the character % to the end of a line) should be generously used throughout the

program; and comments written in the body of a rule should be aligned to the right of the

terms of the clause. When possible, all clauses of a rule should be located together, and

all singleton variables (those whose names only occur once in a clause) should have names

that. begin with an underscore. Some simple PROLOG procedures tiat demonstrate these

guidelines are shown in Table 4.3, along with comments explaining their meaning.

The functors predecessor/2 and gcd/3 in Table 4.3 demonstrate PROLOG's ability

to use recursion in order to describe their relationships. By using recursion, the functor

prececessor/2 can be used to find ancestral predecessors at any depth. If one were to

attempt a definition of predecessor/2 using explicit definitions, the clauses in Table 4.4

might result [4:15]. Hlowever, it is quickly seen that this new definition of predecessor_2/2

will require a new clause for every level of the predecessor relationship. Since a parent

41-,•

Formal Object "Cons pair" Notation Element Syntax
-(a,[]) [al[]] [a]
.(a,.(b,[)) [al[bl[I]]1 [a,b]
.(a.,. (b,. (c, [1))) [al[bl[cl[1]]] [a,b,c]

.(a,X) [aiX] [aiX]

.(a,.(b,X)) [al[bIX]] [a,bJX]

Table 4.5. Equivalent forms of lists [31:44]

is a predecessor, it requires a clause. Since grandparent, great-grandparent, and great-

great-grandparent are also predecessors, they receive their own clauses, as well. Using

this definitional technique, additional clauses must be added until the functor reaches the

depth of a given family tree. If the family tree changes, the definition of predecessor_2/2

(and perhaps other functors) may have to change, as well. The recursive definition of

predecessor/2 in Table 4.3, however, applies to family trees of any depth. This fact,

combined with the simplicity of its definition, makes this definition preferable to the explicit

definition in Table 4.4. Additionally, many relationships (such as greatest common divisor)

are most easily described in terms of recursion, yielding such expressions as gcd/3 in

"Table 4.3.

4.2.3 PROLOG and Lists. Lists play an important role in PROILOG and receive

special handling as a result. A list is a binary structure whose first argument, or head, holds

an element and whose second argument, or tail, contains the remainder of the list [31:43].

In a proper list, the head can contain any PROLOG object as an element, but the tail should

contain another list [4:68]. It is obvious from this definition that lists are recursively defined

structures. The base case of this recursive definition is the empty list, otherwise known

as nil, represented by the symbol []. PROLOG constructs lists by using the functor ./2

(pronounced as "dot"), but a second syntax is provided for ease of use. Thus, the list

.(X,Y) is usually written as [XIY], where X is called the head of the list and Y is called

the tail of the list. Since, in a proper list, Y would itself be a list, those readers familiar

with Lisp will recognize that this representation of a list provides an analog to the Lisp

'cons' function, with Lisp using the notation (X.Y) as the equivalent of PROLOG's . (X,Y).

Additionally, the final empty list is usually omitted from the written notation for the

list [31:43]. Examples of the various equivalent notations for lists are shown in Table 4.5.

It should be noted that by using the dot functor directly, rather than using the alternate

element-syntax, one can construct terms that are more general than lists [31:43]. While

4-9

member(X,[XLXs). /* Element X is a member of a list */

/* that begins with element X.
member(X,[_Y,Ys]) /* Element X is a member of a list */

member(X,Ys). /* [_Y,Ys] if it is a member of the */

/* tail Ys of that list. */

length([],O). /* The empty list has length 0.
length([_XlXs],L+l) /* Any other list has a length that */

length(Xs,L). /* is one greater than the length */

/* of its tail.

reverse([]j,[]). /* The reverse of an empty list is */
/* itself an empty list.

reverse(List,Reverse) /* The reverse of a non-empty list */
reverse(List,[],Reverse).

/* is found by using reverse/3.

reverse([XlXs],Acc,Ys) :- /* Reverse the list [XlXs] by moving */
reverse(Xs,[XIAcc],Ys). /* X to the front of accumulator */

/* Acc and reversing the tail Xs. */
reverse([],Ys,Ys). /* If the list to be reversed is

/* empty, then the accumulator Acc */
/* contains the reversed list.

Table 4.6. Example PROLOG for member/2, reverse/2 [31:45,48] and length/2 [4:92-
93]

the term

. (a,.(b,c)) (4.10)

is a legal use of the ./2 functor, its result

[a,blc] (4.11)

is not a proper list.

Since lists are recursively defined structures, it is natural that many list-processing

operations are themselves recursive. The use of recursion allows the functor to "move

along" the list in order to perform some operation upon the list. This is demonstrated

4-10

in Table 4.6, where member/2, reverse/2, and length/2 are shown, as well as auxiliary

predicate reverse/3.

4.3 Quintus PROLOG

Quintus PROLOG is an Edinburgh-compatible PROLOG which is commercially avail-

able for VAX/VMS, UNIX, and other operating systems. (A version of Quintus Prto-

LOG (in reality LPA-PROLOG) is available for MS-DOS, but is not compatible with the

VAX/VMS and UNIX versions.) It provides a fast, efficient implementation of PROLOG

along with a considerable number of additional features. Quintus includes a program entry

and debugging interface to the Emacs text editor (for the VAX/VMS and UNIX versions),

special functions to allow interfacing with programs written in other languages, style and

syntax warning and error messages, a comprehensive interactive debugger, a substantial

library of list processing, term manipulation, and input/output routines, and an on-line

documentation and help facility [28:1]. A number of these features are discussed in the

subsections below.

4.3.1 Using Emacs In Quintus. Quintus PROLOG is supplied with a version of

Emacs written by Unipress Software, Inc. Emacs is a highly customizable editor written

in a Lisp-like language. To run PROLOG under the Emacs interface, the user types a

command such as:

prolog + (4.12)

or

prolog + file-to-be-edited (4.13)

at the UNIX command prompt. This will cause Emacs to be invoked with two windows:

PROLOG runs as a subprocess in the lower window, while file-to-be-edited, if supplied by

the user, is loaded into the upper window [27:21].

By using the Emacs interface, one has access to a number of additional ways of

manipulating text in the PROLOG environment. Since PROLOG is run as a subprocess

of the Emacs editor, all Emacs editing commands can be used in the PROLOG window.

Thus, one can copy all or part of a previous query and then deposit it on the current

PROLOG command line, or scroll within the window in order to view previous screens of

text [27:21]. By using the command sequence Control-o, one can move the focus amongst

the various displayed windows. By moving the focus into the editor w'ndow, moving the

4-11

cursor onto a given PROLOG procedure, and then pressing Escape i, that procedure will

the loaded into the PROLOG interpreter. The command Control-x. will locate the source

code associated with any given functor name and arity, loading the source code into the

editor window [27:23]. To exit the Emacs environment, the command Escape Control-c

should be used. Other commands of interest may be found in the Quintus PROLOG System

Dependent Features Manual, Chapter 4, and the Quintus Prolog User's Manual, Chapter 4

and Appendix III.

4.3.2 Style and Syntax Restrictions. Quintus PROLOG imposes a number of style

and syntax restrictions upon what is technically proper PROLOG in order to make its

operation more straightforward. There are nine main suggestions for program layout which

are given by Quintus, shown below. While the use of all nine are recommended, items 1,

2, 3, and 4 are necessary in order to fully utilize the Emacs interface [28:65-66].

1. Group PROLOG clauses of the same name and arity together in one location.

2. Start the heads of all PROLOG clauses at the beginning of a line, indenting all

additional lines for the claubfs.

3. If a comment line continues onto a following line, indent the continuation line.

4. Do not write clause definitions that use operators in the heads of the clauses.

5. Use blank lines between procedures, but not between clauses of the same procedure.

6. Write each goal on its own line.

7. Use a comment of the form /* text */ immediately above each procedure in order

to detail any assumptions about the arguments and to explain what actions the

procedure performs.

8. Use comments of the form % text to the right of goals in the body of a procedure,

avoiding the use of /* text */ comments on lines of code.

9. When possible, try to use meaningful variable names.

In addition to the layout guidelines given above, Quintus imposes three style con-

ventions upon user programs.

1. Define all clauses for a given procedure in one file, as the consult/i and compile/1

functors do not allow the definition of a procedure to be spread across more than one

file. (This limitation can be circumvented if the procedure in question is declared as

a multifile or dynamic procedure, as discussed in Section 4.3.3.)

4-12

check-state(TheState) -
old.state(TheStaye,X), % Error occurs on this line

write(TheState),
write(X).

Table 4.7. Misspelled variable resulting in singleton variable [28:49]

2. All clauses for a given procedure should be contiguous in the source file.

3. If a variable appears only once in a clause (otherwise known as a singleton variable),

the name for the variable should begin with the character '-'.

If any of these conditions is not met, Quintus PROLOG will produce a warning message

when the file is consulted. If style convention 1 is violated, PROLOG will ask whether the

new definition should replace the existing procedure definition, or if the new definition

should be ignored instead. If style convention 2 is violated, PROLOG produces a warning

message of the form:

[WARNING: Clauses for foo/2 are not together in the source file]

Similarly, if style convention 3 is violated, such as in Table 4.7, PROLOG will issue the

warning message:

[WARNING: Singleton variables, clause 1 of check-state/l: TheStaye]

If desired, some or all of these style warning facilities can be toggled off and on

by using the no-style-check/1 and style-check/1 predicates, using the arguments all,

single-var, discontiguous, or multiple, as appropriate [28:48-49].

The Quintus manuals mention that the use of disjunctions is usually unnecessary.

However, if they are to be used, Quintus recommends the use of the '1' symbol in place of

the standard ';' (semicolon) in order to promote clarity of the resultant code. Table 4.8

shows an example of the use of the '1' symbol. It is important to note, however, that since

the semicolon has been historically used as the disjunction symbol, the Quintus system

will automatically translate the '7' symbol into a semicolon for its internal representation

4-13

bank.open(Day,Time) -

weekday(Day), % The bank is open on weekdays
\+ bankholiday(Day), % except bank holidays
1000 =< Time, % from 10 a.m.
(Time =< 1500, % until 3 p.m.

\+ friday(Day) %. Monday through Thurday

I Time =< 1800, ', or 6 p.m.
friday(Day) % on Fridays

Table 4.8. Example of the use of I in disjunctions [28:67]

of the program. Thus, any printouts that are generated by the Quintus system will show

semicolons, even if vertical bars were present in the original source code files [28:67].

4.3.3 Control and Directive Constructs. Quintus PROLOG is equipped with a num-

ber of control constructs, most of which are shown in Table 4.9 [26:45-49]. The use of control

constructs in program code provides the programmer with a means of specifying "how"

the logic program is executed, rather than simply specifying "what" is to be accomplished.

Thus, while the use of control constructs is necessary for the construction of real-world

PROLOG programs, they should be used sparingly and only where necessary. Use of control

constructs, when not carefully considered, can easily change the meaning of a PROLOG

program without any intent to do so.

Quintus PROLOG allows the use of directives within source files. A directive is a

query that is located inside a PROLOG source file, rather than being supplied by the user

at the PROLOG command line. Directives are written as terms with principal functors

:-/1 or ?-/1, and are executed as they are encountered. Quintus PROLOG treats the :-/1

and ?-/1 functors equivalently, but recommends the use of the :-/1 functor in source files

in order to enhance program clarity. Any legal PROLOG clause may be used as a directive.

One common type of directive to have in a file causes the consultation of a second file,

such as:

consult(subfilename). (4.14)

It should be noted that debugging will not be enabled during the execution of a directive,

regardless of whether top-levpl debugging has previously been enabled. A directive such

as

"- trace, do-verification. (4.15)

4-14

can be used to overcome this limitation through an explicit call to either debug/O or

trace/0 [26:34].

Two additional Quintus PROLOG declarations are important in the construction of

the AFIT.VERIFY program. The first, multifile/1, is used to declare that a predicate

is defined across a number of separate files. This directive is of the form

"- multifile PredicateSpecification (4.16)

where PredicateSpecification is one or mor,- predicate specifications (name and arity)

separated by commas. For example,

"- multifile module-name/l, port/4, part/3, state-eqn/2. (4.17)

would declare that each of these predicates is spread across more than one file. This

declaration should be placed in the first file of the sequence of files containing these

predicate specifications [26:42]. Similarly, dynamic/i is used to allow new clauses for

a specified predicate to be dynamically inserted into the database (using assert/i) or

removed from the database (using retract/!). The syntax for dynamic/1 is identical to

that shown for multifile/1 in (4.17) [27:81-82].

4.3.4 Library Routines. Quintus PROLOG includes a set of supplemental files that

are organized into an online library structure. The library contains a large number of

predicates which, although not native to the PROLOG environment, can be regarded as

extensions to the PROLOG system. By default, the predicate library-directory/1 has a

clause for the library directory, and this predicate can be altered by the user in order to add

additioral directories to the library search path. The definition of library-directory/l

is utilized by the PROLOG system in order to allow the user to refer to any library file by

using the syntax library (FileName). For example,

:- compile(library(lists)). (4.18)

would load the library file lists.pl, along with any files it depends upon, into the

database [25:1].

4-15

There are a number of different library files, each concerned with a different area of

interest. There are four packages (basics.pl, lists .pl, sets.pl, and ordsets.pl) that

contain list-oriented operations [25:18], six packages (arg.pl, changeoarg.pl, occurs. pl,

same-functor.pl, subsumes.pl, and unify.pl) that extend PROLOG's built-in set of op-

erations on terms [25:36], one package (strings. pl) concerned with text processing [25:471,

eight packages (lineio.pl, continued.pl, ask.pl, prompt.pl, read-in.pl, ctypes.pl,

read-const.pl, and read-sent.pl) that deal with obtaining user input [25:93-110], one

package (not.pl) concerned with various types of inequalities [25:71], eight packages

(files .pl, ar-open.pl, ask.pl, big-text.pl, crypt.pl, directory.pl, unix.pl, and

fromonto.pl) concerned with various file operations [25:77-85], as well as some unsup-

ported library packages [25:111]. Many of these PROLOG library files actually load com-

piled, optimized code which rapidly executes functions that would be much slower if

actually supplied in PROLOG. Through the use of these prewritten library packages, the

AFITVERIFY program has been enhanced through an upgraded user interface and the

introduction of a component library system.

4.4 Summary

As shown throughout this chapter, PROLOG provides a rich environment for pro-

gramming. Its pattern-matching abilities make it uniquely suited to logic programming

applications, such as the VERIFY and AFIT-VERIFY systems. PROLOG contains a

full set of control structures, as well as a unification-driven execution model, and can be

shown to be a Turing-complete language [31:228]. A summary of some of the more common

PROLOG procedures and control constructs is shown in Table 4.10 [22:64].

4-16

P, Q Conjunction: (P, Q) succeeds if P succeeds and then Q succeeds.

P; Q Disjunction: (P; Q) succeeds if P succeeds or Q succeeds. The character '1' may be
used as an alternative to ';'.

Cut: When first encountered as a goal, cut always succeeds. If backtracking should cause
PROLOG to return to the cut, the current clause will fail.

call(X) If X is instantiated to a term, then the goal call(X) is executed as if X actually
appeared in its place. However, when call(X) is executed, any cuts in X will only
cut alternatives in the execution of X, not in the clause in which it occurs.

\± P This fails if P has a solution and succeeds otherwise, with the condition that P may
not contain a cut. Thus, \± P is equivalent in behavior to (P -> fail ; true).

P -> Q ; R Conditional goal: This statement is read "if P then Q, else R" and selects
between the execution of Q and R, based upon whether P succeeds. It should be noted
that if P succeeds and Q fails, then backtracking into P does not occur. Additionally,
P may not itself contain a cut. The predicate ->/2, also known as 'local cut', acts
as if it were a cut whose range is restricted to within the disjunction, as it cuts away
R and any choices within P. The precedence of ->/2 and ';' are 1200 and 1100,
respectively, while the precedence of ',' is 1000, so the statement P, Q -> R, S; T
is equivalent to ((P, Q) -> (R, S)) ; T.

P -> Q This is equivalent to the statement P -> Q ; fail.

true This statement always succeeds.

otherwise This statement, like true/0, always succeeds. The predicate otherwise/0 is
often used for constructing conditionals.

fail This statement always fails.

false This statement, like fail/0, always fails.

repeat Predicate repeat/0 always succeeds, whether entered directly or by backtracking,
and is generally used to simulate looping constructs found in procedural languages.
Use of repeat/0 is not recommended, as recursion can produce similar results.

Table 4.9. Control Constructs in Quintus PROLOG [26:45-49]

4-17

PROLOG Meaning Example

Notation

AND: Satisfied if both terms child(X,Y) ,male(Y)
before and after the AND are satisfied.

IF: The head of the rule is true IF parent(X,Y) :-child(Y,X).

the body of the rule is true.
OR: Satisfied if either the file-exists(F) ; fail
term before or after is satisfied.

[] Square brackets enclose a list. [nand,nor,xor]
I (a) Denotes an element at the If [1,2,3] = [HIT]

head of a list. then H= 1, T= [2,3]
(b) Equivalent to ; in

Quintus PROLOG. file-exists (F) I fail
CUT: Within the current procedure, abs(X,Y) :-X<O, !,Y is-X.

don't backtrack through the CUT. abs(X,X). CUT keeps
abs/2 single-valued.

Unifies terms oii both sides. If f(X,b,Z)=f(a,Y,Z), then
both sides become f(a,b,Z)

and X=a, Y=b
UNIV: Converts between lists fact (N,Factorial)
and terms. =.. [fact ,N,Factorial]

assert, Add a new fact or rule to the asserta(flag(loaded,xor))
asserta 'top' of the PROLOG database

assertz Add a new fact or rule to the assertz(day(tuesday))
retract Remove one fact or rule from retract (day (monday))

the PROLOG database. removes this entry
retractall Remove all matching facts or rules from retractall(day(_X)) removes

the PROLOG database. (Similar to all matching entries that
retract,but retractall always succeeds.) might exist in the database

call Execute the procedure that is the call(fact(N,Fact))

argument of call
Lowercase Atoms: used for names of fact, write
Identifiers procedures or data

Uppercase Variables Date, ModuleName

Identifiers

Table 4.10. Common PROLOG Procedures and Constructs [22:64]

4-18

V. Program Development of AFITNVERIFY

5.1 Background

Captain Kevin Sparks originally developed the AFITVERIFY system to model

the behavior of Barrow's VERIFY system [30:Ch 5, 1]. AFITVERIFY was originally

written using PROLOG-1 under MS-DOS. As Captain Sparks continued to develop the

program, however, the limitations that resulted from the small memory model used in

PROLOG-1 forced him to rehost the program under Quintus PROLOG [30:Ch 5,3]. This

adaptation of the PROLOG-1 version of AFITVERIFY to Quintus PROLOG was per-

formed in the most direct and rapid method possible, consisting mainly of changing the

precedence of several operands and defining some predicates as being stored in multiple

files (as opposed to a predicate's definition being loaded from a single file). Despite the

fact that the program was still operating under a PROLOG-1-oriented design philosophy,

Sparks's final version of AFITVERIFY provided between a 5X and 15X speedup when

compared to the final PROLOG-1 version [30:Ch 5, 2].

5.2 Initial Development Efforts

5.2.1 Analysis of Sparks's Final AFIT-VERIFY. Code development work for

the current thesis began with an analysis of Sparks's final version of AFITVERIFY.

Examination of the code revealed that the system was designed around the PROLOG-

I environment, with the addition of the minimal number of modifications necessary for

the program to operate in the Quintus PROLOG environment once the AFITVERIFY

program exceeded the limited stack space provided by PROLOG-1. It was especially

evident that the program did not provide a user-interface, other than that provided by the

PROLOG environment itself.

Sparks's AFITVERIFY provides a command-line-style interface to the user. At

the PROLOG prompt, one must first load the AFITVERIFY program into memory,

followed by loading the various files needed to define the system under test. The execu-

tion of the AFITVERIFY program is then invoked through the verify/1 procedure,

specifying the name of the top-level module as the argument.

The verify/1 procedure was broken into five clauses in order to cover the five

possible types of modules: previously verified modules, primitive modules with no state

information, primitive modules with state information, non-primitive modules without

5-1

verify(Module) :- /* previously verified module */
verified(Module),

writeln(['»>'WModule,' previously verified »>']).
verify(Module) :- /* primitive module with no state "/

not part(Module,....),

not state.eqn(Module,_),

asserta(verified(Module)),
writeln(['»>'WModule,' primitive (needs no verification)»>']).

verify(Module) :- /* primitive module with state */
not part(Module,....),

asserta(verified(Module)),
writeln(['>W' ,Module,' primitive (needs no verification)»>']).

verify(Module) :- /* non-primitive with no state */
not state.eqn(Module,_),
writeln(['>>> Attempting to verify ',Module,'»>']),
verify-components(Module),

derive-and.equate-behaviors(Module),
asserta(verified(Kodule)),

writeln(['<<< Success! Behavior of' ,Module, 'meets its specification.']).
verify(Module) :- /* non-primitive with state */

writeln(['>>> Attempting to verify ',Module,'»>']),
verify-components(Module),

derive-and-equate-behaviors(Module),
derive-and.equate-states(Module),
asserta(verified(Module)),
writeln(['<<< Success! Behavior of' ,Module, 'meets its specification.']).

Tabe 5.1. Sparks's Implementation of verify/]

5-2

state information, and non-primitive modules with state information. These five clauses

are shown in Table 5.1. This delineation proved to be effective in directing the verification

work to I,- performed and has been retained in the updated system.

As indicated in Table 5.1, the verify/1 clauses invoke a number of other proce-

dures. The procedures derive-and-equate-behaviors/l, derive-and-equate-state/l,

and verify-components/1, as their names indicate, allow the verify/i clauses to hier-

archically verify each component of a given module, ensuring that all outputs and states

are equivalent. The verify-camponents/I procedure implements a fail-driven loop which,

for each part (Module, Name,Component) fact in a given module, methodically invokes tile

verify/1 procedure in turn on each component in the module.

Digital circuits are defined in Captain Sparks's implementation by a set of facts,

similar to those used by Barrow [2]. In summary, a given module, ModuleName, is defined

by its input and output ports

port (ModuleName,PortName, InputOrOutput,SignalType)

its list of subcomponents

part (ModuleName,LocalName,SubModuleName)

a wire list of internal connections between the input and output ports of the module and

its subcomponents

connected (ModuleName,SourcePort, DestinationPort)

and the specified output behavior of the module

output-eqn(ModuleName, OutputPort := SpecifiedBehaviorFunction)

If a module is primitive, then it contains no subcomponent modules and its specified

behavior is defined to be equivalent to its derived behavior. If a module has state variables,

then it. will have a number of clauses defining the state specification: a definition of each

5-3

state variable that is available to the external environment

state.of (ModuleName,ExternalStateName, SignalType)

a listing of the Ftates internal to the module's subcomponents that actually produce the

state information

state-map (ModuleName,ExternalStateName, InternalStateName)

and a simple definition of the state transitions for each given state

state eqn(ModuleName,ExternalStateName := NextStateFunction)

It is important to note that only those state equations that follow a regular set of transitions

(such as "increment by one") can be easily described. Although an IF/THEN/ELSE

coustruct is available for use, describing the transitions of a complex automaton can rapidly

become ,inmanageable.

Captain Sparks made use of the setof/3 procedure when he implemented both

the derive and-equate-state/1 and derive-and-equate-behaviors/1 procedures. The

setof (Templace ,Goal ,SetName) procedure is invoked with three arguments: a Template,

which provides the form for the elements in the resulting list, a Goal, and a SetName, which

returns the resulting set (expressed as a list) of all instances of Template such that Goal

is satisfied. As an example, the derive-and-equate-behaviors/1 procedure included the

statement

setof (outputs, output-eqn (Module, Outputs := -),Outlist) (5.1)

which should produce a list, Outlist, which contains a number of output-eqn/2 elements.

Since Module is instantiated when this procedure is invoked, only those output-eqn/2 facts

in working memory that pertain to the given module should be in the list.

Since PROLOG-I did not provide the setof/3 procedure, Captain Sparks wrote his

own setof/3. When he moved AFITVERIFY from PROLOG-I to Quintus PROLOG,

5-4

however, he discovered that Quintus provides a setof/3 procedure as a library function.

The Quintus library procedure, however, did not behave precisely in the same fashion as

Captain Sparks's procedure. Due to the fashion of the differences, along with the particular

test circuits used in Captain Sparks's research, this did not cause any difficulties during his

thesis work. When subjected to larger circuits with more outputs and states, however, this

code no longer produced correct output. In order to produce the proper set, the statement

setof(Outputs,Dummy1^output eqn(Module,Outputs := Dummyl) ,Outlist) (5.2)

was substituted. In this statement, Dummyl-output(Module, Outputs := Dummyl) spec-

ifies that the variable Dummyl is to be existentially quantified over the goal. As a result,

Equation (5.2) produces a single set containing all of the output eqn(Module,Outputs

Dummyl) facts for the given Module, while the syntax used in Equation (5.1) produces, upon

backtracking, a one set for each Output,Dummyl pair. This problem, in fact, only mani-

fested itself on both such setof/2 procedure calls in derive-and-equate-behaviors/1.

Another problem was discovered in the derive-and-equate-behaviors/1 procedure

with respect to setof/2. In this case, the statement

setof (Outputs,Dummy2^derived-behavior(Module,Outputs := Dummy2) ,Derlist)

returned a "set", Derlist, *n which a number of the derived behavioral outputs were

almost identical, except in one respect - the name of their uninstantiated variable. Thus,

Derlist might be returned as a list such as that shown in Equation (5.3).

[sumO (-132), carry (-318), sumO(_113), suml (_823), carry(-1238)] (5.3)

In order to properly compare these derived states to the states in the module specification,

however, this list needs to be "compacted." The procedure setof to-trueset/2, along

with helper procedure unifiable-with-list/2, was written to "compact" the list in

Equation (5.3) into that shown in Equation (5.4).

[sumO(_132) ,carry(-318) suml(_823)] (5.4)

5-5

Finally, although Captain Sparks had both derive-and-equate-behaviors/1 and

derive-and-equate-states/1 perform an arithmetic comparison to ensure that the num-

ber of specified outputs (or states) was the same as the number of derived outputs (or

states), this was not a sufficient test. It is also necessary to test that these lists contain

elements which are unifiable. As an example, given the sample lists of derived and specified

outputs

[sumO (-132), carry (_318), suml (_823)]

[carry (-123), sumO (-124), suml (-125)]

we can unify sum0(-132) with sumO(-124), suml (-823) with suml (-125), and carry (318)

with carry(_123). This would be an acceptable match betwen the derived and specified

outputs. If, however, the verification process were to produce the specified list

[carry(27770)]

and the derived list

[sum(27878)]

(as, in fact, occured at one point during the testing of the halfadd component) then

AFITNVERIFY should not accept these lists as matching, even though the number

of elements is identical. The procedure unifiableilists/2 was written to handle this

problem, and is shown in Appendix A.1.1.

Thie majority of the work in the AFITVERIFY system is performed by the

derive-behaviors/3, equal behaviors/3, derive-states/3, and equal-states/3 pro-

cedures. Derive-behaviors/3, through the he!per procedure derive-behavior/3), works

its way from each output back toward the inputs, replacing the components found along

the way with their specified behaviors (after first recursing to verify that their specified

behaviors meet their implementation-derived behavior). A my Boolean or mathematical

equations that are encountered are expanded and canonicalized using the evaluatel/2

procedure, and any other type of behavior is left unchanged. If new behaviors were to be

added to the AFITVERIFY environment, additional derive-behavior/3 clauses would

be required.

5-6

The evaluatel/2 procedure performs a simple canonicalization of its first argu-

ment, returning the result as its second argument. The evaluatel/2 procedure uses the

evaluate-brown/2 procedure to actually perform the canonicalization, then displaying the

result to the user before returning to the calling procedure. The true work of canonicalizing

the behavioral expression is done by the evaluate-brown/2 clauses. Captain Sparks,

as guided by Dr F.M. Brown, implemented the evaluation of AND, OR, NEG (logical

negation), IF/THEN/ELSE, and '+' (addition) operations. As new behaviors are added

to AFITVERIFY, it is clear that new evaluate -brown/2 clauses would need to be

added as well. This code has already been expanded to allow for evaluation of behaviors

that are specified as NAND or NOR logic.

Both the derive-states/3 and *ierive-behaviors/3 procedures make use of the

substitute-state/3 procedure. Substitute-state(Module, OldBehavior ,NewBehavior)

is used in derive-states/3 to derive the next state in a module with state equations, or

in derive-behaviors/3 to substitute a derived behavior into the previously derived state

equations. Substitute-state/3 uses the state-map/3 facts which define the connection of

internal and external states in a module, along with the replace-all/5 procedure which,

given the stateinap/3 information, replaces the internal state variables in a submodule's

derived behavior with the appropriate externally-visible state variables, thereby deriving

a new derived behavior for use in the enclosing module.

5.2.2 Attempted Integration of Scheme with PROLOG. As previously mentioned in

Section 1.4. one objective of this thesis was to allow for the incorporation of additional proof

strategies into the AFITVERIFY framework. Although PROLOG is a Turing-complete

language, it can be a difficult language for writing elaborate functional procedures Since

the Scheme language (a variant of Lisp) is well suited to the implementation of func-

tional procedures, a copy of Scheme Prolog 1.1, written by John Cleary et al. of the

University of Calgary was obtained. This package provides a fairly simple interpreter for

pure PROLOG, implemented in the Scheme language. It was hoped that, by integrating

Captain Sparks's AFITVERIFY into a Scheme-based environment, that the addition

of new proof strategy function modules would be simplified. In order to support the

Scheme Prolog 1.1 package, C-Scheme 6.1 was obtained from the Massachusetts Institute

of Technology (MIT) and temporarily installed on a local UNIX-based computer system

(galaxy.?fit.af.mil). Approximately two weeks were spent obtaining the source code for

both of these software packages, installing them on a local computer, and modifying

Scheme lProlog 1.1 for compatibility with C-Scheme 6.1 syntax. Once this initial task of

5-7

?- op(lO0, fy, not).

not X :-
X,

fail

true.

Table 5.2. Sparks's implementation of not/1 for Quintus PROLOG

producing an executable version of Scheme Prolog 1.1 was completed, however, it was dis-

covered that the combination of Scheme Prolog 1.1, C-Scheme 6.1, and AFITVERIFY

was not completely compatible. Major causes of this incompatibility were the distribution

of the AFITVERIFY code throughout multiple files and the extensive use of control

structures (such as cut) within the AFITVERIFY program. This path of investigation

was therefore terminated due to the projected number of hours that would have been

necessary to integrate these packages. Since these tools were not absolutely essential to

this thesis, efforts were shifted instead into integrating the AFITVERIFY program with

the Quintus PROLOG environment.

In order to prove that the derived behavior is equivalent to the specified behavior,

Sparks's AFITNVERIFY system applies a small (but powerful) set of rewriting rules.

Much of thp work in this area is performed by the Boolean expansion code originally

created by CPT Michael A. Dukes [12]. Other simple rewrite rules, such as rewriting

IntegerVariable + 1 as the mathematically equivalent 1 + IntegerVariable, are also

used by the system. Additional transformation rules can be added as alternative clauses

in the equal behaviors/3 and equal-states/3 procedures.

5.3 Initial Integration of AFITNVERIFY into Quintus PROLOG

Kevin Sparks's version of AFITVERIFY was designed to be compatible with the

PROLOG-1 environment and the MS-DOS operating system. Quintus PROLOG uses a

default file type of .pl, while PROLOG-1 uses a default of .pro, so all source file names

were converted accordingly. Since MS-DOS uses a carriage return (CR) and line feed (LF)

pair to mark an end-of-line, while UNIX uses only a line feed, all extraneous carriage return

characters were immediately removed from the source files.

5-8

op(900, fy, not).

not Goal :-
\+ call(Goal).

Table 5.3. Improved implementation of not/1 for Quintus PROLOG

:- op(900, fy, not).

not Goal :-
free-variables(Goal, [] , [1, Vars),
Vars = [_Anyl[_Any2],

error-break('N! free variables -p-n! in goal not(-p)'n',
[Vars,Goal]),

\+ call(Goal). % Act like \+, if user agrees

not Goal :-
\+ call(Goal).

Table 5.4. Implementation of pseudo-logical negation for Quintus PROLOG

While PROLOC, I supplies the not/i predicate, Quintus PROLOG does not provide

this functor. Sparks provided a minimal implementation of not/1 for Quintus PROLOG,

shown in Table 5.2, but this implementation did not mesh smoothly with the Quintus

environment. In particular, PROLOG-1 uses operators whose precedence ranges from 0

to 255, while Quintus PROLOG uses a range from 0 to 1200. The implementation of not/i

shown in Table 5.3 not only provides this operator with an appropriate precedence, but

also uses the Quintus \+ operator. If call(Goal) can succeed, then not Goal will fail, but

if call(Goal) does not have a solution, then not Goal will succeed.

It should be noted that this implementation of not/1 provides an "is not provable"

operator, as opposed to the "is not true" operator of formal logic. An implementa-

tion of not/i that corresponds more closely to logical negation, shown in Table 5.4,

must first ensure that Goal is completely defined (does not have any non-ground in-

stances) before executing the \+call(Goal) operation. Quintus provides the library func-

5-9

tor free-variables/4, invoked as

free-variables (Generator, Template, OldList, NewList)

where NewList contains all universally quantified variables (i.e., those yet unbound) in

Generator, less those which occur in Template, with OldList used as an accumulator.

Thus, in Table 5.4 all unbound variables in Goal are moved to list Vars, which is then

tested to be non-empty. If it is non-empty, error-break/2 writes an error message to the

output, where the first argument is a formatting string and the second argument contains

a list of variables or constants to be applied to the formatting string. If the debugging

break level is set appropriately, Quintus will then continue by executing \+ call(Goal)

regardless of the error condition; otherwise the procedure will fail with the cut preventing

the execution of the second clause. If the list Vars is empty, however, this indicates that

Goal consists only of ground instances. The first clause will fail and the second clause will

be executed instead. An implementation of this variety, however, introduces additional

processing overhead and is not necessary for the task at hand. If necessary, however, it

could easily replace the currently used definition in Table 5.3.

So as to allow the redefinition of the module-name/i, port/4, part/3, state-of/3,

state-eqn/2, state-map/3, output-eqn/2, and connected/3 predicates by the various

components being verified, the muti ifile/1 and dynamic/1 directives are applied to each

of these predicates. The use of multifile/1 declares that the clauses of the procedure

may be found in more than one file, and dynamic/i declares that clauses may be asserted

and retracted during program execution.

5.4 Enhancements to the AFITVERIFY System

Sparks's AFITVERIFY system provided a good, minimal emulation of Barrow's

VERIFY environment. When using Sparks's program, the user loads the necessary

routines into the PROLOG environment (usually through a specially constructed PROLOG

source file) and then manually invokes the verifier upon the component in question.

A substantial effort was put into enhancing the user interface to the AFITVERIFY

system, taking full advantage of the library routines provided by Quintus and previously

discussed in Section 4.3.4. In particular, the ask-oneof/3, prompted-constant/2 and

yesno/2 predicates were used in forming a menu-based user interface while simultane-

ously guiding the flow of program execution according to the user's choices. This user

5-10

Welcome to AFITVERIFY!

(Type ? at any prompt if you require help)

Performing AFITVERIFY Verification!

Select your action from the following choices:
Preload the previously verified components into the database

(This may increase execution speed of a verification run)
Reverify a component from the component library
List the nonprimitive components which have been verified this session
Insert a component into the component library area
Extract a component from the library area into current directory
Verify a new component from the current directory

Halt the program and exit Prolog
(Note: this option -is- revocable at the next menu!)

Enter your choice: preload, reverify, list, verify, insert, extract, halt:

Table 5.5. Opening Screen in AFITVERIFY System

interface is initially invoked by a directive in the file qverify.pl which executes the

do-verify/O procedure found in verify.pl. The top level menu itself is contained in

th, main-nenu/O pro(edure >.i,,, ii, tb- a-,-0 fi!c. .'\ddi'"nal interface procedures, such

as conditional-halt/0, are also found in qverify.pl.

As a result of the extensive work on this user interface, users of the system may

now work within the AFITNVERIFY framework without any knowledge of how it is

constructed or internally operates. When entering the system, the user is presented with

the screen shown in Table 5.5. This menu, like many of the others used in the system,

will only accept those choices shown on the bottom prompt (preload, reverify, list,

verify, insert, and exit), or enough characters to uniquely identify the menu choice.

(Since, in this case, all of the menu choices begin with different letters, the selection can

be made with only the first letter being entered.)

Other menus are presented at various times during the session, such as when selecting

a library file to be reverified. The user is prompted to select the name of a library

component, such as xor or counter. Once again, the user must select one of the presented

5-11

choices and is only required to enter enough characters to uniquely specify the desired part.

The menu of library parts is maintained in the file modfiles.list as an open list. The

AFITVERIFY system reads in this open list and converts it to a text representation of

the list in order for it to be used in the prompting routines. When a part is inserted into

the library (using the insert option), the system modifies the list of known library files

and stores the new list in the modfiles.list file.

In order to make AFIT.VERIFY into a practical system, it was necessary to allow

more than one part to undergo verification during a session. Sparks's implementation of

AFITVERIFY did not allow this to occur, as Quintus PROLOG does not, by default,

allow "multifile" clauses in a particular file to be reconsulted during program execution.

In addition, Sparks's system did not provide for any "memory" from one verification run

during a session to the next verification run. In order to solve these problems, a number of

experiments were conducted. It was discovered that the multifile/1 directive needed to

be in the first file of the sequence of different files containing the "multifile" clause. When

the multifile/l directive is encountered, as in

multifile part/3.

it removes all existing clauses for part/3 from the database and gives the "new" part/3

clause the multifile property. Clauses for part/3 which are subsequently loaded from

other files are then added at the bottom of the PROLOG database. If one later attempts

to reconsult one of the other files that contain part/3 clauses, however, Quintus PROLOG

prints an error message and refuses to reconsult the clauses.

This refusal caused a number of complications in the development and execution of

the AFITVERIFY environment. If one were to reverify an xor, the system would read

the clauses in the file xor.pl into the database, and then perform the verification. If one

were then to verify a full adder that used xor as a submodule, such as the part faddxor,

the AFITVERIFY system would encounter an error condition when trying to reconsult

xor.pl as a submodule of faddxor.pl. This problem was resolved by moving the task of

consulting the module source files into a special source code file, multdyn.pl.

The file multdyn.pl is stored in the parts library directory and pewrforms three func-

tions. First, it contains the multifile/1 and dynamic/i directives for the module-name/I,

port/4, part/3, output-eqn/2, state-eqn/2, state-map/3, state-of/3, and connected/3

5-12

load.in(FileName) :-
(not flag(loaded,FileName) ->

(reconsult(library(FileName)), % load one time, then
asserta(flag(loaded,FileName)))) % flag it

true. %, component already loaded

Table 5.6. Source Listing for load-in/1

predicates used in defining the hierarchical structure and behavior of the digital circuit.

Second, it contains the get-top/1 procedure which actually loads the top level circuit

module into the database. (The source code for the file multdyn.pl can be found in

Appendix A.1.7.) Whenever a digital system is verified, the main program loop first

reconsults multdyn.pl, thereby redeclaring the multifile/1 directives. The main circuit

file is then consulted into the database via the get-top/1 procedure in multdyn.pl,

satisfying the requirement that all consult/i commands are executed from the source

file containing the multifile/1 directive.

In conjunction with the use of get-top/1, a new set of header directives was added to

the digital circuit definition files in order to simplify the hierarchical loading of submodules.

Tlie file qops.pl contains the load-in/1 procedure, shown in Table 5.6. The first state-

ruents in a circuit definition file should consist of a series of load-in/1 directives, specifying

all of the submodules directly used by the current module. Thus, a set of directives such
as

load-in(primitive).

load-in(xor).

would ensure that the file containing the primitive components (primitive .pl) and the file

containing the definition of the exclusive-or (xor.pl) are both consulted into the database

during the loading of the current module. Since xor.pl will contain a load-in/1 directive

as well, any submodules necessary to the construction of the xor submodule will also be

loaded. The procedure load-in/1 is carefully constructed such that any file from the parts

library will only be consulted at most once during the verification of a digital circuit. If a

submodule file were consulted more than once, it would in effect "double-wire" a second,

i(lentical subinodule in parallel with the intended submodule.

5-13

HALFADD.PL

"load-in(primitive). % get nand2
load-in(inv). % get inverter

/* ----------------- halfadd ----------------------

retractall(module-name(_ModuleNames)).
% Make sure that THIS is the topmost
% module up to this point in time

module.name(halfadd). % Name the current module

Table 5.7. Example of PROLOG Directives and Facts In Module Definition File

In addition to using the load-in/1 directive, a retractall(module-name(-Name))

directive was added to all module definition files. This directive, which should appear

after the load-in/1 directives but before the module-name/1 fact, makes certain that the

last module name declared (namely, the one for the top-level module being verified) is

the only such fact remaining in the PROLOG database. This is essential for proper loading

and executijti of hierarchically defined modules within the AFITNVERIFY environment.

Table 5.7 provides an example of the first few lines of a properly composed module definition

file.

5.5 New Modules In AFITNVERIFY Parts Library

Captain Mark Mehalic, AFIT/ENG, was consulted for advice on modules that should

be added to the AFIT.VERIFY parts library. He advised that effort would best be spent

in adding parts that were compatible with the Zycad VHDL (VHSIC (Very High Speed

Integrated Circuit) Hardware Dcscription Language) cell library used by AFIT. On the

advice of Captain Mehalic, Captain David Banton, Captain Curtis Winstead, and Mr

Gene Howell were consulted in order to obtain access to some of the simple circuits that

had previously been designed using the Zycad cell library. Since the Zycad cells were

based upon two-input NOR gates as well as the two-input NAND gates previously used in

5-14

FADD4CL

Carryain

SinO UO Sum
0, Half Adder 7

i n lo i n l

FarruoutAdrCaso

lnOl U•

T inO t Sum d Sump,,,alfAddr •)
Inll I inl

Carryout

inpt Ni)a uo i t

H lalfAdderU1

Tno2 owinl

Canuyout

1Sum3

In03

' talfAdder tCarryiout
In13 ==U1 - 2

Carryoul 1

Figure 5.1. Four-Bit Full Adder With Carry Lookahead

AFI'rVERIFY, these students recommended introducing a new primitive component,

nor2, to the system's set of primitive components stored in the file primitive.pl.

In order to perform an accurate translation of the Zycad VHtDL parts, it was first

ne'cessary to create an inverter module. This file, inv.pl, implements an inverter as a

two-input NAND) gate (hand2) whose inputs are connected together. Once an inverter was

available, actual Zycad VItDL files were examined for translation into PROLOG syntax.

The following files were selected for conversion:

1. An AND-OR-INVERT circuit (aoi.pl) based upon an example circuit in the Zycad

Reference Manual [32:Ch 10,73].

5-15

2. A 4-to-I multiplexor (mux4xl .pl) composed of 2-to-1 multiplexors (primitive con-

ponents) and inverters.

3. A half-adder (half add.pl) composed of two-input NANDs and inverters.

4. A full-adder (faddnor.pl) composed of two-input NORs, inverters, and half-aw-ders.

5. A four-bit full auder with carry lookahead (fadd4_cl.pl) composed of half-adders,

inverters, exclusive ors, and two-, three-, four-, and five-input NANDs.

As mentioned above, the AND-OR-INVERT circuit was based upon VHDL code provided

in the Zycad Reference Manual [32:Ch 10,73]. The other circuits were based upon VHtDL

code written by Captain David Banton, currently a doctoral student at AFIT. Since

implementation of these circuits followed similar methodologies, the four-bit full adder

will be examined in depth to serve as an example.

5.5.1 Four-Bit Full Adder with Carry Lookahead. In order to implement the four-

bit full adder with carry lookahead, it was first necessary to implement a set of three-, four-,

and five-input NAND gates. These definitions, found in files nand3.pl, nand4.pl, and

nand5.pl, are not highly optimized circuit designs, but instead use combinations of two-

input NAND gates (primitive component nand2). These files are included in Appendix A.

The specified behavior for this circuit was derived using both a carry propagation

technique, as discussed in the text by Hill and Peterson [16:575-585]. Given that the

equations for the sum bits (5) and carry bits (C) are

Sj = (((Aj A^Bj) V(-,Aj A -,Bj))^ACj_,)

v(((Aj A -B,) V (-'A j A Bj)) A -,Cj_,) (5.5)

C, = (Aj A Bj) V (((Aj A -Bj) V (-Aj A Bj)) A Cj,), (5.6)

where S, an(] Co are the least-significant sum and carry bits generated and carry in is C- 1 ,

we can simplify these by introducing a propagate function, P, and a generate function, G.

Gi = A, AB, (5.7)

P) = Aj (D B)

= (A ^A-'Bj)V(-AA^Bj) (5.8)

5-16

The use of P and G allow us to rewrite Equations (5.5) and (5.6), i.e.,

Cj = aj V (Pj A Cj_,) (5.9)

Sj = Pj -- (5.10)

= (-P A C^-i) v (P, A -•C-,) . (5.11)

Using Equations (5.9) and (5.11), we can derive an overall behavioral specification

for a four-bit full adder t16:576-577]. First, a set of equations can be established for the

carry bits:

Co = Go V (Po A C,.) (5.12)

C1 = GI V (P1 A Co)

= Gv(P, AGo)V(PoACCi) (5.13)

C, = G 2 v (P 2 A C1)

= G' V (P-, A G1) V (P2 P)L A Go) v (P2 A P, A P0 A tiA) (5.14)

C,,I = C 3 v(P 3 AC,)

= G 3 V(v(3 AG)v(P3 APAAP, AG 1)

V (P1 A A, A P, A Go) V (P3 A P2 A P, A Po AC'i,) . (5.15)

(Using these results, we can then produce simllhfied equations for the sum bits, Sj:

So = (-Pc A Ci,,) V (Po A -Ci,,) (5.16)

S, = (-iP A CO) V (PI A -,CO) (5.17)

-, = (-,P 9 A C,) V (P9 A --C,) (5.18)

53 = (-P3 A C2) V (P3 A -C). (5.19)

We can further simplify the equation for Co,,, the only carry bit observed by the

external environment, by first noting that a two bit full adder only generates a carry out

(C) when the sum exceeds 41,, as shown by Equation (5.20).

C•+- = (.j+, A 11+) V ((Aj+, V f/+,) A (((-, A Aj) V (0-, A 'j) v (Aj A Bj)) (5.20)

5-17

Application of this observation results in Equation (5.21) for C1 in terms of Ci,, eliminating

tte need to actually generate C0 in order to determine C 1 . We can then repeat this process

to obtain Equation (5.23), obtaining the final carry out as a simple combinational logic

function of the input signals [17:181]. By the same approach, after obtaining Co by means

of Equations (5.6) or (5.9) we can derive a new representation for C2 , as indicated in

Equation (5.25).

C1 = (A, A BI) V ((A, V B,) A ((Ci, A Ao) V (Ci,, A Bo) V (Ao A Bo))) (5.21)

Cout = (A3 A B 3) V ((A 3 V B 3) A ((C'1 A A 2) V (CI A B 2) V (A2 A B 2))) (5.22)

= (A: A B3) V ((A 3 V B3)

A ((((A, A B,) V ((A, v B,) A ((Ci,, A A.) v (Ci,, A Bo) V (Ao A Bo)))) A A 2)

V (((,4 1 A BI) V ((Al V BI) A ((C.. A Ao) v (Ci,ý A Bo) v (A. A Bo))))A B,)

v (A. A B2))) (5.23)

(2 = (2A, A B 2) V ((A, V B 2) A ((Co A Aj) V (Co A B 1) V (A, A Bi))) (5.24)

= (A• aB2) v ((A2 v B2)

A((((Ao A Bo) V (Ci, , A ((-,/o A B0) V (Ao A -RBO)))) A A,)

v (((Ao A Bo) v (C2, A ((-,A o A Bo) v (A. A -,Bo)))) A B,)

V (A, A Bi))) (5.25)

Equation (5.23) is used as the output equation for the carry out in the four-bit

full adder fadd4_cl.pro, as indicated in Table 5.8. Equations (5.21) and (5.25) are used

in the generation of output equations for S, and S3 from Equations (5.18) and (5.19),

Fquation (5.12) is used withi Equation (5.17-) to generate an output equation for SI, and

Equation (5.16) was used to generate an output equation for So. The output equation for

S2 is shown in Table 5.9.

5-,-I

output-.eqn(fadd4-c1 ,carryout(FA4CL) :=
or(and(inO3(FA4CL),in13(FA4CL)),

and(or(inO3:FA4CL),in13(FA4CL)),

or(or(i.nd(or(and(in01(FA4CL),inII(FA4CL)),

and(or(in0l(FA4CL),in11(FA4CL)),
or(or(and(carryin(FA4CL),

inOO(FA4CL)),

and(carryin(FA4CL),

in1O(FA4CL))),
and(inOO(FA4CL),

inlO(FA4CL))))),

inO2(FA4CL)),

and(or(and(inOI(FA4CL),inll(FA4CL)),

and(or(in0l(FA4CL),inll(FA4CL)),

or(or(and(carryin(FA4CL),

inOO(FA4CL)),
and(carryin(FA4CL),

inlO(FA4CL))),
and(inOO(FA4CL),

inlO(FA4CL))))),
in12(FA4CL)),

and(inO2(FA4CL) ,in22(FA4CL))))))).

Table 5.8. Definition of Carry Out. in Terms of Input Signals

output-eqn(fadd4-cl ,sum2(FA4CL) :
or(and(neg(or(and(inO2(FA4CL),neg(inl2(FA4CL))),

and(neg(inO2(FA4CL)),in12(FA4CL))),
or(and(inOl(FA4CL),inll(FA4CL)),

and(or(inOl(FA4CL) ,inll(FA4CL)),

cr(or(and(carryin(FA4CL),inOO(FA4CL)),

and(carryin(FA4CL) ,inlO(FA4CL))),

and(inOO(FA4CL) ,inlO(FA4CL)))))),
and(or(and(inO2(FA4CL),neg(in12(FA4CL))),

and(neg(inO2(FA4CL)),inI2(FA4CL)))
neg(or(and(in0l(FA4CL),inll(FA4CL)),

and(or(in01(FA4CL),inIl(FA4CL)),

or(or(and(carryin(FA4CL) ,inOO(FA4CL)),

and(carryin(FA4CL) ,inlO(FA4CL))),
and(inOO(FA4CL),in1O(FA4CL))))))))

Table 5.9. Definition of Sumn Bit. & in Terms of Input Signals

-5 -19

VI. Results and Recommendations

6.1 Results of System Enhancements

This thesis has demonstrated that the verification of digital logic systems through

the use of a PROLOG-based environment such as AFIT-VERIFY is both practical and

advantageous. Through the use of formal verification rather than simulation, a VLSI

circuit designer can prove that his or her circuit designs precisely conform to the circuit

specifications, rather than simulated the circuit design against a subset of those specifica-

tions.

At the start of this thesis, AFITVERIFY was sufficiently developed to perform

simple demonstrations of formal circuit verification. The user was required to load all of the

necessary program modules into the PROLOG interpreter, to manually load the necessary

circuit description files, and then to manually initiate the verification process. As such,

it was unreasonable to assume that anyone who was not a highly experienced PROLOG

programmer would be able to use the AFITVERIFY system.

This thesis effort advanced the capabilities of the AFITVERIFY system, primarily

in the area of improved user interface. The capabilities of Quintus PROLOG were used to full

advantage in providing a menu-based interface. A centralized parts library was established,

and procedures for inserting components into the library and extracting them into user

directories were supt)lied.

In addition to the work spent on the user interface, a number of simple VLSI

circuits were translated into AFITVERIFY descriptions. Each of these circuits was

submitted to the verification process (sample verification runs are attached in Appendix B),

(lenonstrating that the formal verification of real-world circuit designs is a realistic goal.

In particular, the AFITVERIFY standard parts library now contains two-, three-, four-,

and five-input NAND gates, two-input NOR gates, registers, integer incrementers, two-to-1

and four-to-1 multiplexors, and-or-invert gates, one bit half adders, a variety of one bit

full adders, an(l a four bit full adder. These parts are hierarchically constructed and

demonstrate the various features of '.he AFITVERIFY environment.

During the course of this research, a number of logic errors in the PROLOG source

code for AFITVERIFY were discovered. Due to the high degree of interdependence

between the various procedures, this task consumed a larger amount of time than previously

anticipated. In-depth understanding of how essential (and intricate) PROLOG procedures,

6-1

such as setof/3, operate was not obtained until late in this thesis effort, hampering efforts

to track some of the more elusive errors. In addition, time was spent on the unsuccessful

integration of AFITVERIFY into the PROLOG-in-Scheme environment, as discussed

briefly in Chapter 5.2.2. Additionally, although work was done on adding homomorphic

proof strategies to the verification algorithm, this work was hampered by difficulties in

expressing arbitrary state machines within the AFITVERIFY framework.

Despite these difficulties, however, substantial work was performed in the areas

of improving the robustness and useability of the AFITVERIFY environment. As

presented in this document, AFITVERIFY is a practical system for verification of

digital logic systems. Its use is only limited by the ability of the circuit designer to specify

the outputs of a module in terms of its input signals and by the execution speed of the

host computer.

6.2 Recommendations for Future Work

The work on this thesis has revealed a number of areas in which AFITNVERIFY

should receive future enhancements.

1. Additional parts should be added to the standard parts library. AFIT students and

faculty in the VLSI design and testing area should be consulted in the selection

of parts for the library. In this fashion, AFITVERIFY will grow into a tool

which will meet the needs of the AFIT population. One suggested part would be

tihe four-by-four bit multiplier that has been implemented by Mr Gene Howell as

part of a digital radio frequency memory (DRFM) [201. This part is available in a

structural VIhDl description which has been successfully simulated in VHDL and

is being fabricated in Gallium Arsenide. This part would be essential to verifying

either larger subsystems of the DRFM (development of which is an ongoing track of

thesis research) or to verifying a full arithmetic logic unit.

2. The verification subsystem should be modified in order to allow the use of PROLOw

"(demons" in describing the behavioral specification. The use of "demons" (helper

procedures that can be invoked, as necessary, to perform useful tasks for higher

level p)rocedures) in the definition of output equations (output-eqn/2) would greatly

simplify the hardware dlesigner's task of specifying an overall behavior for a complex

module. Deriving such specifications was extremely difficult for a number of the

digital systems investigated during this effort. (Tables 5.8 and 5.9 demonstrate the

cornplexity that can be achieved by even simple output equations.)

6-2

3. The AFITNERIFY system currently supports signals of type Boolean and Inte-

ger. Barrow's VERIFY system included support for a bit-addressable integer type,

as well as interconnection between Boolean and Integer signals. The addition of

these ..tures is recommended for compatibility between the VHDL language and

AFITVERIFY descriptions.

4. The AFIT Department of Electrical and Computer Engineering's VLSInet includes

Sun Microsystems SUN-4 workstations with Quintus PROLoG Release 2.4.2. Since

much of the VLSI design work that occurs at AFIT takes place on the VLSInet

computers, installation of the AFITERIFY system on the VLSInet (in particu-

lar, on the workstation ares.afit.af.mil) would allow the students and faculty to use

AFITVERIFY as one of their design tools.

5. Along with placing AFITVERIFY on an accessible VLSInet workstation, future

thesis efforts should work on integrating AFITVERIFY with other VLSI design

tools. One tool that might merit special consideration for integration into an overall

design tool suite is Captain Joseph Eicher's PROLoG-based circuit specialization

program [13].

6. An automated translator between VIIDL structural descriptions and PROLOG-based

AFITNERIFY module descriptions should be written. This task will 1teed to be

performed by someone who is familiar (and fluent) in both VI)DL and PROLOG. A

prototype V\l l)l-to- l~RoGoc parser has previously been written by CPT Michael

D)ukes. Access to a VIII)L-to-AFITNERIFY translator would allow the verifica-

tion of many of the "ircuits designe(d at AFIT and throughout the Air Force.

7. Work should continue on expanding the number and type of proof strategies available

to thO AFITVERIFY system.

6 :1

Appendix A. Program Listings

The following files constitute the development code for AFITVERIFY. The files

are as follows:

qverify.pl Main program file which contains menus and driver code.

boole2.pl Boolean expansion code, based upon work by CPT Dukes [12].

derbeh.pl Derive module behavior.

derstate.pl Derive module's next state.

eqbeh.pl Determine behavioral equivalences.

eval.pi Canonicalization and evaluation clauses.

Trultdyn.pl Allows module definition clauses to be loaded from a hierarchical set of files.

(This file resides in the parts library area.)

opentail.pl Performs operations on open lists.

qops.pl Quintus PRO LOG operator definitions and system-dependent procedures, includ-

ing most file-r,!-ited operations.

In addition, a number of files are located in the AFITVERIFY parts library. These

files contain the nodlule definitions that users have explicitly entered into the component

library, as well as some index files used to retrieve the coml)onents. These files are as

follows:

parts. verified Contains a set of facts listing all components that have been previously

verified and stored in the parts library.

counter.pl Contains the definition of a simple integer counter, as described by Bar-

row [2:65].

faddxor.pl Contains the definition of a full adder built from NAND and XOR gates.

modfiles.list Stores an open list containing the names of all other component files

except the file of primitive components.

primitive.pl Contains the definitions of the primitive components REG (register), INC

(incrernenter). MUX (two-input multiplexor), NAND2 (two-input NAND), NOR2

(two-input NOR{).

A I

xor.pl Contains the definition of an exclusive or (XOR) built from two-inut NAND gates.

inv.pl Contains the definition for a simple inverter circuit build from a single two-input

NAND gate.

aoi.pl Contains the definition of an AND-OR-INVERT circuit, as per the example pro-

vided in the Zycad Reference Manual [32:Ch 10,73].

halfadd.pl Contains the definition of a half adder constructed from inverters and two-

input NANDs.

nand3.pl Contains the definition of a three-input NAND gate.

nand4.pl Contains the definition of a four-input NAND gate.

nandS.pl Contains the definition of a five-input NAND gate.

muxAxl.pl Contains the definition of a four-to-one multiplexor constructed from two-

input multiplexor (MUX) primitives.

halfadd.pl Contains the definition of a half adder built from two-input NANDs and

inverters.

faddnor. pl Contains the definition of a full adder constructed from inverters, half adders,

and two-input NOR gates.

fadd4_cl.pl Contains the definition of a four bit full adder with carry lookahead built

from half adders, inverters, exclusive ors, and two-, three-, four-, and five-input

NAND gates.

A-2

A.1 Source Code Listings

A.1.1 qverify.pl

QVERIFY.PL
/* This file consults the appropriate files to start the */

/* AFITVERIFY environment in Quintus Prolog. This is */
/* invoked by typing [qverify] at the Quintus prompt. */

: asserta(library-directory('/usr/users/ela/labovitz/NewVerify/Work/Parts')).

% Components live in the
% Parts subdirectory
S-- This directory may be anywhere,
% but should be hardwired!

: asserta(library-directory('.')). % New Components should live in

% user's current directory

• [qops,library(multdyn),eval]. % Consult the various files
• [derbeh,derstate,boole2,eqbeh,opentdil].

•/** */

/* Do-verify/O provides the main program loop, running
/* main-menu/O to provide a user interface for the entire */

/* AFITVERIFY system. MainMenu/O uses the helper
/* procedure main-menu-choices to actually present the
/* menu to the user. When a user selects the 'verify'
/* option from the menu system, the do.verification/1 */
/* clause invokes other clauses to recursively verify each */
/* Module. Other clauses used include the following:

1, derive-and-equate.behaviors: provides mechanism to */
derive behavior for each output, and determine */

equivalence to specified behavior.
/* derive-and-equate.states: provides mechanism to
1* derive behavior for each next state, and

determine equivalence to specified next state. */

/* verify-components: uses verify to recursively
verify components prior to deriving component
behavior and next state.

/* These clauses use the fail, always true combination
/* to succeed for all possible outputs and next states.

A-3

/* main prompting loop. *

do-.verify

n1i,nl,
writeln([' Performing AFIT-VERIFY Verification!']),

nl,

main-.menu,

do-.verify.

main-menu
main-.menu-.choices(Answer), % display menu & get choice

((Answer==preload) -> %%.7 CHOJICE=PRELOAD
((not flag(parts-loaded)) %> if verified parts have not been

% previously loaded, then ask if
%we should load them now. If

% yes, invoke load..known..parts.
Cyesno('Should I preload the previously verified components? y/n '

Y),
load-known-parts

ni) % not loaded, but don't want to

writeln(['Already preloaded....']1), % If no, satisfy the partial goal

% and continue onward.
nl)

(Answer=reverify) >%/% CHOICE=REVERIFY

(get-.verified-.parts(PartsOpenList),

convert..to-notail(PartsOpenList ,PartsList),
closed-.flatlist-to-string(PartsList ,PartsString),

string..append('Choices: ',PartsString,Prompt),

ask-.oneof (Prompt ,PartsList ,Component),
do-verification(Component)) % Re-verify the part

(Answer==halt) %% X CHOICE=HALT

condit ional-halt

(Answer==list) %% X CHOICE=LIST

list-.known-.parts

(Answer==verify) %% X CHOICE=VERIFY

A-4

(ask-for-term(
'Name of module (file) to be verified (do not include .pl suffix): ',

[' Enter a module (file) name at the prompt. However,',nl,

do -not- enter the file suffix (usually .pl).',nl,
Enter the keyword ''exit'' to quit back to the menu.'],

ModuleName),

(ModuleName \== exit) ->

(do-verification(ModuleName)) % read in new file & verify

true)

(Answer==insert) -> % CHOICE=INSERT
(ask.for-term(

'Module name to be inserted in library (do not include .pl suffix): ',

[' Enter a module (file) name at the prompt. However,',nl,

do -not- enter the file suffix (usually .pl).',nl,

Enter the keyword ''exit'' to quit back to the menu.'],

ModuleName),
(ModuleName \== exit) ->

copy-new-module(ModuleName)

true)

(Answer==extract) -> . CHOICE=EXTRACT

(ask-for-term(

'Module name to be extracted from library (do not include .pl suffix): ',

[' Enter a module (file) name at the prompt. However,',nl,

' do -not- enter the file suffix (usually .pl).',nl,

' Enter the keyword ''exit'' to quit back to the menu.'],
ModuleName),

(ModuleName \== exit) ->

extract-old-module(ModuleName)

true)

main-menu.choices(MenuChoice) :-
writeln(

['Select your action from the following choices:']),

writeln(
[' Preload the previously verified components into the database']),

writeln(
[P (This may increase execution speed of a verification run)']),

A -5

writeln(
[' Reverify a component from the component library']),

writeln(
[' List the nonprimitive components which have been verified ',

'this session']),
writeln(

[' Insert a component into the component library area']),
writeln(

[' Extract a component from the library area into current directory']),
writeln(

[' Verify a new component from the current directory']),
writeln(

[' Halt the program and exit Prolog']),
writeln(

P (Note: this option -is- revocable at the next menu!)']),

11,
ask-oneof(

'Enter your choice: preload, reverify, list, verify, insert, extract, halt',
[preload,reverify,list,insert,verify,extract,halt],
MenuChoice).

/* DoVerification(ComponentFile) is the control procedure for the */
/* verification process. After establishing whether the verification */

run is to be in verbose or terse mode, the various component and */
/* subcomponent files are loaded into working r Dry. If the top */
/* level component is not known to be previou ;rified, the
/* verification process starts. If it is su, -ully verified, the */

user is asked whether or not the top compc should be inserted */
/* into the parts library. */

do-verification(ComponentFile)
retractall(flag(terse)), % reset terse-mode flag
ask-oneof('Should this verification run be executed in TERSE mode?',

[yes,no],yes,TerseFlag),
((TerseFlag==yes) ->

asserta(flag(terse))
I
true),

reconsult(library(multdyn)), X reset multifile/1 and dynamic/1
get-top(ComponentFile), % load the ComponentFile into memory
writeln(['Componenz file ',ComponentFile,' loaded.... ']),
module-name(Component), % get the name of the top comp ent
writeln(['--- Beginning verification of module ',Component]),

A-6

nl,
(not flag(verified(Component)) -> % if not previously verified, then...

verify(Component),
writeln(['>>>> Component ',Component,' verified! <<<<',nl]),

get-verified.parts(PartsOpenList),
convert-to.notail(PartsOpenList,PartsList),

(not member(Component,PartsList) ->
(ask-oneof('Should this component be inserted into the library? ',

[yes,no],no,Answer),

(Answer==yes ->
copy-new-module(ComponentFile)

true))

true))

writeln([nl,'>>>> Component ',Component,' already verified! <<<<',nl])).

do.verification(_ComponentFile)

module-name(Component), % We only reach this clause if
nl, % the component can't be verified
writeln(['****** Component ',Component,' fails verification! ******']),

nl,
nl.

conditional-halt
yesno('Do you really want to halt Prolog? y/n ',n),
halt.

conditional-halt -

do-verify. % Previous clause failed, so repeat loop

/* ask-for-term(Prompt,Help,Term) prompts the user for the input */
/* Term, providing the initial Prompt and any additional Help */
/* whenever the input ? is given by the user.

askfor_term(PromptConstant,HelpList,Term) "-
prompted-constant(PromptConstant,TempTerm),
(TempTerm = '.' ->

(writeln([' NULL INPUT. PLEASE REENTER.']),

A- 7

nl,
ask.for.term(PromptConstant,HelpList,Term))

(TempTerm ='?' ->

(writeln(HelpList),
nl,
ask-for-term(PromptConstant,HelpLi3t,Term)))

Term=TempTerm).

/* Verify/1 is the interface from the initial menu system */

/* into the ''real'' verification subsystem. Multiple
/* clauses are provided to cover all possible cases of
/* primitive/nonprimitive state/stateless modules.

verify(Module)

flag(verified(Module)), % This is a previously verified module

writeln(['>>' ,Module,' previously verified >>>']),

nl.

/* For a primitive module, behavior = structure.

/* No need to reassert this in the database, since it can

/* be taken from the behavioral specification.
/* output-eqn(Module, Output := Behavior) ALREADY EXISTS. */
/* If it is decided that derived-behavior should appear as
/* asserta(derivedbehavior(Module,Output,Behavior)), the */
/* derivebehavior clause dealing with primitives can be */
/* removed. A similar decision is required for the
/* asserta(flag(verified(Module))) for a primitive Module. */
/* With only one possible verified clause per Module,
/* the space required was minimal for the time savings. */

verify(Module)

not part(Module,...), % primitive module with no state
not state-eqn(Module,_),

asserta(flag(verified(Module))),
writeln(['»>'W,Module,' primitive (needs no verification)>>>']),

nl.

A-S

/* For a primitive module, behavior = structure, as above. */
/* Also, no need to reasert next state either. */
/. state-eqn(Module,Nextstate := Function) ALREADY EXISTS */

verify(Module)
not part(Module,.,.), % primitive module with state

asserta(flag(verified(Module))),
writeln(['»>'W,Module,' primitive (needs no verification)»>']),

nl.

/* Derive behavior for all outputs and if equal to */
/* specified l-'havior, then assert in database. This may */

/* require later garbage collection if the earlier outputs */
/* are okay, but a late: output is not. This would require */
/* a cleanup to check the flag(verified(Module)) against the*/
/* derived-behavior and next_state clauses. If the clauses */
/* are not consistent, then remove all derive-behavior and */
/* next-state clauses.

verify(Module)
not state-eqn(Module,_), Z non-primitive module with no state
nl,
writeln(['>>> Attempting to verify non-primitive module ',Mcdule,'>>']),
verify-components (odule),

derive-and.equate-behaviors(Module),
asserta(flag(verified(Module))),
writeln(

['<<< Success! Behavior of ',Module, ' meets its specification.«<']),
nl.

verify(Module) %- % This must be a non-primitive with state
nl,
writeln(['>>> Attempting to verify non-primitive moduli. '.Moduln,'»>']),

nl,
verify-components(Module),

deriv'_3nd-equate-behaviors(Module),

.V9

derive-and-equatestates(Module),
asserta(flag(verified(Module))),
writeln(

['<<< Success! Behavior of ',Module, ' meets its specification.<<<']),
nl.

/* derive-and-equate.behaviors

/* The first clause of the next three procedures always */
/* succeeds. We need a way to check that all components */
/* are verified, and all behaviors and nextstates are
/* equivalent. The second clause of each procedure does */
/* this checking by generating lists of components, states,*/
/* and outputs and comparing the length of the two lists */
/* for the states and outputs since no two state or output */
/* names should be generated twice for a single module. */
/* Setof will generate all Components for a single module, */
1* so we just check to see if that component was actually */
/* verified.

derive-and-equate-behaviors(Module)
derive-behaviors(Module,Output,DerivedBeh),
equal-behaviors(Module,Output,DerivedBeh),
asserta(derived-behavior(Module,Output,DerivedBeh)),
fail.

derive-and-equate-behaviors(Module) %. added existentials to setof
setof(Outputs,Dummyl-output_•qn(Module,Outputs := Dummyl),Outlist),
length(Outlist,Outnum),
setof(Outputs,Dummv2-derived-behavior(Module,Outputs,Dummy2),DerlistO),
setof-to-trueset(DerlistO,Derlist), . make Derlist into a true set
length(Deilist,Dernurý`

writeln([nl,'For module ',Module,' :']),
writeln([' Specified output list is ', Outlist]),
writeln([' Derived output list is ', Derlist]),
writeln([' Number of specified outputs is ', Outnum]),
writeln([' Number of derived ouputs is ', Dernum,nl]),
Outnum =:= Dernum, % same number of outputs

A 10

t

unifiable-lists(Outlist,Derlist), %. same output functors

writeln([' ',Outlist,' matches with ',Derlist,nl]).

derive-and-equate-behaviors (Module) :-

retract(derived-behavior(Module,. ,-),
fail.

/* setof-to-trueset(AlmostSet,TrueSet) is used to make a
/* 'set' AlmostSet with uninstantiated variables returned *
/*by setof into a TrueSet where only one instance of

/*any element (without regard to uninstantiated

/*variables) is found.

setof-to-trueset([1,[])

setof-.to-.trueset([HeadITaill ,TSet)
unifiable-with-list(Head,Tail), % is another instance of Head in Tail

setof ..to-trueset (Tail ,TSet).

setof..to-trueset([HeadiTaill ,[HeadlTSerlt])

setof-.to-.trueset(Tail,TSet). %no other instance of Head in Tail

1* derive-,and-equate-states

derive-and-equate-states(Module)
derive..states(Module,State,Next-State),

equal-states(Module,State,Next-State),

asserta(next-state(Module,State,Next_.State)),

fail.

derive-and-equate-states (Module)-
setof(States,state-eqn(Module,States :=_) ,Statelist),

%. get set of all specified States
length(Statelist ,Statenum),
setof(DStates,next-state(Module,DStates,.) ,Derlist),

7. get set of all derived States
length(Derlist ,Dernum),

writeln([nl,'For module ',Module,' :']),

A\- I1I

writeln([' Specified State list is ', Statelist]),
writeln([' Derived State list is ', Derlist]),
writeln(C' Number of Specified States is ', Statenum]),
writeln([' Number of Derived States is ', Dernum]),

nl,
Statenum =:= Dernum, same number of states
unifiablelists(Statelist,Derlist), same output functors
writeln([' ',Statelist,' matches with ',Derlist,nl]).

derive-and-equate-states(Module) "-
retract(next.state(Module ,....)),
fail.

/* unifiable-lists/2 checks if the two list arguments can
/* be unified. It uses unifiable-with-list/2 to check */
/* each element of the first list, in turn, with the
/* list. We assume that we have already checked that the */
/* two lists have the same length, and that they are all */
/* unique elements.

unifiable-lists([],_List2)

unifiable-lists([HeadITail],List2)
unifiablewithlist(Head,List2),
unifiable-lists(Tail,List2).

unifiable-with-list(Element,[Headl_Tail]) -

not(not(Element = Head)), can we unify Element and Head?

unifiable-with-list(Element,[_HeadlTail])
unifiable-with-list(Element,Tail). 7 otherwise, check again.

/* verify-components/1 verifies each of the subcomponents */
/* of the current module, in turn. When completed, it
/* uses parts-verified/2 to check if all of the
/* subcomponents were, in fact, successfully verified. */
/**********************************- **************

verify.components(Module) -

part(Module,_,Component), % get a subcomponent,

A\1i

verify(Component), % verify it, and try

fail. % to get another subcomponent

verify-components(Module) :-

setof(ComponentName-part(ModuleNameComponent),Complist),

% Complist is list of all

% submodules

parts-verified(ComplistComplist), % Are all submodules verified?

writeln(['+> Module ',Module,' has verified submodules:

Complist]),

nl.

verify-components(Module)

setof(Component2,Name-part(ModuleNameComponent2),CompList),

Complist is list of all

% submodules

parts-verified(CompListVCompList),

writeln(['-> Module ',Module,' can only verify submodules:

VCompListnll out of submodules: ',CompList, <-'DI
nl.

/* parts-verfied - This procedure ensures that all parts

(Components) of a Module have been verified. A list

of parts(Components) generated by setof is passed,

and parts-verifed checks that each one has an asserted
verified fact and returns a list of those which have,
in fact, been matched with such a fact.

parts-verified([],[]) % base case for recursion

parts-verified([ComponentITaill,[ComponentiRest]) :-

flag(verified(Component)), % is Component verified:

parts-verified(TailRest). % if so, check tail...

parts-verified(E-ComponentITail],Pest) :- % only reach this case if

parts-verified(TailRest). % can't verify a Component

A - 13

/* Restart/O writes an initial welcome message and starts */

/* the main program loop.

restart :-
writeln([' Welcome to AFITVERIFY!']),
writeln(['
writeln(

[p (Type ? at any prompt if you require help)',nl]),

do-verify.

/* The following directive will start the program when this */
/* file is consulted.

%:- restart.

/* Using the following directive INSTEAD of the previous */
/* directive will save the compiled program into an
/* executable named AFITVerify. Running AFITVerify will */
/* then run the restart/O procedure and start the program. */

save('AFITVerify',l), % Save compiled program
restart.

A-I H

Al.1.2 boole2.pl

BOOLE2.PL

BOOLE'S EXPANSION

/* The following code is a modified version of code
/* developed by CPT Mike Dukes.

/* He defined xor($), or(Q), and(-), and not(-) as
/* operators. Sparks used them as principle functors. *

/* A detailed explanation of this code can be found in *
1* CPT Dukes PROVING BOOLEAN EQUIVALENCE WITH PROLOG. *

/* Additional in-line comments are provided where
/* modification for this approach is required.

/* Currently, the functors xorl2, or/2, and/2, neg/1, *

/* nor/2 and nand/2 are supported.

eval(or(1,..),1):-!.

eval(or(_.,1) ,1) :-!

eval(or(O,X),X):-!.

eval(or(X,O) ,X) :-!.

eval(or(neg(X) ,X) ,1):!

eval(or(X,neg(X)) ,1):-.
eval(or(X,X),X):-!.

eval(and(1,X) ,X) :-!.

eval(and(X,1),X):-!.

eval(and(O,-D,O):-!.

eval(andC.,O),O):-!.

eval(and(neg(X) ,X) ,O) :-!.

eval(and(X,neg(X)) ,O) :-!.

eval(and(X,X) ,X) :-!.

eval(xor(X,1) ,neg(X)) :-!.
eval(xor(1,X) ,neg(X)) :-!.

eval(xor(O,X) ,X) :-!.

eval(xor(X,O) ,X) :-!.

eval(xor(X,X) ,O) :-!.

eval~xor(Xneg(X),),1):-!.

eval(neg(O),1):-!'

A -1I5

eval(neg(1) ,O) :-!.

eval(X,X) :-!.

/* Added support for 2-input nand and nor as evaluatable functors. *

eval(nor(l,-2,O):-!.

eval(nor-,l) ,O) :-!.

eval(nor(O,X) ,neg(X)) :-!.

eval(nor(X,O),neg(X)) :-!.

eval(nor(neg(X) ,X) ,O) :-!.

eval(nor(X,neg(X)) ,Q):-!.

eval(nor(X,X) ,neg(X)) :-!.

eval(nand(l,X) ,neg(X)) :-!.

eval(nand(X,1) ,neg(X)) :-!.

eval(nand(O,.) ,1) :-!.

eval(nandC..,O) ,1) :-!'.

eval(nand(neg(X) ,X) 4):-'.
eval(nand(X,neg(X)) ,1):-!.

eval(nand(X,X) ,neg('X)) :-!.

/* extract(Var,Expression) returns a variable Var selected from *

those found in the structure Expression, using a blind, *

depth-first search.

extract(X,X) %- X is of the form inX(Avariable)

X =.. [-,Arg],

var(Arg),!.

eactract(X,neg(Y))

extract (X,Y).

extract(X,or(L,-))

extract(X,L).

extract(X,orC.,R))

extract (X,R).

extract(X,and(L,_.))

extract(X,L).

extract(X,and(..,R))

extract(X,R).

extract(X,xor(L,-))

A -16

extract(X,L).

extract(X,xorC..,R))

extract(X,R).

extract(X,nor(L,j))

extract(X,L).

extract(X,norC..,R))

extract(X,R).

extract(X,nand(L,_.))

extract(X,L).

extract(X,nandC..,R))

extract(X,R).

/* remove-.x-l(OldExp,Var,NewExp) and remove-.x-.O(OldExp,Var,NewExp) *
replace every occurrance of the variable Var in structure *

1* OldExp with 1 (or 0) in the structure NewExp.

remove-.x-l.(Y,-X,Y)

atomic (Y),

remove-x-I(neg(Y) ,.X,neg(Y))

atomic(Y),

remove-.x-l(Y,X,Y)

Y =.[I1,Argll,
varCArgi),

X [12,-Arg2], %we already know X is a Variable

Il = 12,!.

remove-x-(neg(Y) ,X,neg(Y))

Y =.[Il,-.Arg],
varQ-Argl),

X [12,-.Arg2], %we already know X is a Variable

Il = 12,!.

remove-.x-l(Y,X,1):

Y =. I1,Argl], % inoCAl) \= inoC..2) in Prolog
var(Argl), % but we know it is the same input

X =.[Il,..Arg2]4!. %we already know X is a Variable

remove..x-(neg(Y) ,X,0):

Y =.[I1,Arg1],

A-I7

var(Argl),

X =.LIl,-.Arg2],!. %we already know X is a Variable

remove-.x-1(neg(Y) ,X,neg(NewY))

remove-.x-l.(Y,X,NewY).

remove-.x-l(or(L,R) ,X,or(LNew,RNew))

remove-x-(L,X,LNew),

remove-.x-l(R,X,RNew).

remove-.x-l(and(L,R),X,and(LNew,RNew))

remove..x-(L,X,LNew),

remove-.x.. 1(R, X ,RNew).

remove..x-(xor(L,R) ,X,xor(LNew,RNew))

remove-.x-l(L,X,LNew),

remove-x-l(R,X,RNew).

remove..x-lnor(L,R) ,X,nor(LNew,RNew))

remove-.x-l(L,X,LNew),

remove-x-l(R,X,RNew).

remove-x-(nand(L,R) ,X,nand(LNew,RNew))

remove-.x-A(L,X,LNew),
remove..x-(R,X,RNew).

remove..x.O(Y,..X,Y)

atomic(Y),

remove-xO(neg(Y),..X,neg(Y))

atomic(Y),

remove-.x-.O(Y,X,Y)

Y =.[I1,ArgI],

varCArgi),

X [12,-.Arg2], % we already know X is a Variable

Il = 12,!.

remove-.x-.o(neg(Y) ,X,neg(Y))

Y =.[II,Argl],

var(Argl),

X [12,-.Arg2], %we already know X is a Variable

Il = 12,!.

remove-.x-0(Y,X,O):

Y =. I1,Arg1],

var(Argi),

X =.[Il,-Arg2],!. % we already know X is a Variable

remove-.x-.o(neg(Y) ,X, 1):-

Y =.[I1,Argl],

var(Argi),

X =.[Il,..Arg2IJ,! %. we already know X is a Variable

remove-.x-.o(neg(Y) ,X,neg(NewY))

remove-.x-.O(Y,X,NewY).

remove-.x-.o(or(L,R) ,X,or(LNew,RNew))

remove-.x-.O(L ,X ,LNew),

remove-.x-.O(R,X ,RNew).

remove-x-0(and(L,R) ,X,and(LNew,RNew))

remove-.x-.O CL, X ,LNew),

remove-.x-.O(R,X,RNew).

remove..x-.o(xor(L,R),X,xor(LNew,RNew))

remove-x.O(L,X,LNew),

remove-xO(R,X,RNew).

remove-x-o(nor(L,R) ,X,nor(LNew,RNew))

remove..x0(L,X,LNew),

remove-.x-.O(R,X,RNew).

remove-x.O(nand(L,R) ,X,nand(LNew,RNew))

remove-.x-.O(L,X,LNew),

remove-.x-.O(R,X,RNew).

A-19

/* divide(F,X,FO,F1) is used to expand the clause F into two clauses, *
/* FOTemp (in which every X is replaced by logical 0) and FiTemp *
/*(in which every X is replaced by logical 1), which are then
/* simplified by evaluate-.dukes/2.

divide(FX,FO,Fl) :
remove..x-.O(F ,X ,FOTemp),

remove-.x-1(F,X,F1Temp),

evaluate-dukes (FOTemp ,FO),

evaluate-.dukes (FlTemp ,Fl).

/* evaluate..dukes(Expr,NewExpr) performs an elementary simplification *
1* of structure Expr into NewExpr, using itself recursively and *

eval/2.

evaluate-.dukes(X,X)
atomic CX),!.

evaluate-.dukes(X ,X):-

X =.[I,Arg],

var(Arg),

I \== neg,

evaluate-dukes~neg(F),FReduced)

evaluate-dukes(F,FTemp),

eval~neg(FTemp) ,FReduced),!.

evaluate-dukes(or(L,R) ,Resolved)

evaluate-.dukes(L,LNew),

evaluate-duke9 CR, RNew),
eval(or(LNew,RNew) ,Resolved).

evaluate..4ukes(andCL,R) ,Resolved)
evaluate.-dukes CL, LNew),
evaluate-.dukes(R,RNew),

eval~and(LNew,RNew) ,Resolved).

evaluate-.dukes~xorCL,R) ,Resolved)
evaluate-.dukes(L,LNew),

evaluate-.dukes(R,RNew),

eval~xor(LNew,RNew) ,Resolved).

A -20

evaluate-dukes(norCL,R) ,Resolved)
evaluate-.dukes(L,LNew),

evaluate-.dukes(R,RNew),

eval(nor(LNew,RNew) ,Resolved).

evaluate..dukes(nand(L,R) ,Resolved)
evaluate-dukes(L,LNew),

evaluate-dukes(R,RNew),

eval(nand(LNew,RNew) ,Resolved).

/*eq(ExpressionlExpression2) tests if Expressioni and Expression2 are

1*unifiable after Boolean Expansion (performed by extract/2 and
divide/4).

eq(X,X):-'.

eq(F,G) :

extract(X,F),

divide(F,X,FO,F1),

divide(G,X,GO,G1) ,!,

eq(FO,GO) ,!,

eq(F1 ,G1) ,!

A -21

A.1.3 derbeh.pl

***** *********** *** ******* ******* *** *********** **** ********

DERBEH.PL Derive-Behaviors */

/4 The two derive-behaviors clauses identify a specific */
/* output for the Module. The derive-behavior clauses */
/* are then invoked to derive the behavior of that output */
/* for this particular Module. */
/* The derive-behavior clause uses the part, connected, */
/* and output-eqn clauses to derive an output's behavior */
/* and tie it to this instantiation of the module as
/* described in the in-line comments to follow.
/* The derive-and-equate-behaviors clause in verify.pl */
/* uses derive-behaviors to derive all Module outputs and */
/* determine their equivalence to the specified output. */
/* The arguments for derive-behaviors and derive-behavior*/
/* have the following meanings:

/* Args: Module: e.g., 'xor','nand2', ... */
Form: A formula involving terminal-behavior. */

In the initial query, this may be
something like 'out(X)'.

/* Behavior: The resulting derived behavior.
/* In the present version of this procedure, it is assumed */
/* that all of the component-parts of Module have been */
/* previously verified by verify-components. The verified */
/* components derived behavior is either asserted in a
/* derived-behavior clause or specified in an output-eqn */

/* if the component-part is a primitive.

/ ********************•***•************************************/

/* derive-behaviors(Module,Form,Behavior)
/* Case I: no state equation provided for module */

derive-behaviors(Module,Form,Behavior)

not stateeqn(Module,_),

output-eqn(Module,Form := _SpecBehavior),
derive.behavior(Module,Form,Behavior).

/* Case II: state equation is provided for module

A-22

derive-behaviors(Module,Form,Behavior) -

output-eqn(Module,Form := _SpecBehavior),
derive-behavior(Module,Form,TBehavior),

substitute-state(Module,TBehavior,Behavior).

/* Note: This might require the removal of some
internal variables at a later time.

/* derivebehavior(Module,Form,Source)
/* Rules 1A and 1B derive behavior if Form is the name of a */
/* terminal to which some other terminal, in Module, is
/* connected. Rule 1A is invoked if the other terminal is a
/* primary terminal in Module, i.e., one of its inputs or
/* outputs. Rule 1B is invoked if the other terminal belongs */
/* to one of Module's component-parts.

derive behavior(Module, Form, Source)
connected(Module, Source, Form),
primary-source(Source),

(not flag(terse) ->

writeln(['Applying Derive-Behavior Rule 1A to ',Form,nl])
I
true).

derive-behavior(Module, Form, Behavior)
connected(Module, Source, Form),
derived-source(Source),

(not flag(terse) ->

writeln(['Applying Derive-Behavior Rule 1B to ', Form])
I
true),

derive-behavior(Module, Source, Behavior).

/* Rule 2 is invoked if Form is the name of a terminal of one
/* of Module's cnmponent-parts. Rule 2A handles primitive */
/* components where Rule 2B handles non-primitive components. */

A-23

/* The only real difference is where to locate the Components */
/* derived behavior (output-eqn vs derived-behavior). If it */
/* is later decided to assert a derived-behavior clause for */
/* primitives, then Rule 2A can be removed.

derive-behavior(Module, Form, Behavior)
Form \== 1,
Form =.. [F,G],
part(Module, G, Component),

not part(Component,...), % Component is a primitive module
output-eqn(Component, Form := OutForm),

writeln(['Applying Derive-Behavior Rule 2A to ', Form,
' of',nl,' primitive component ',Component,':']),

writeln([' ',Component,'''s output equation:']),
writeln([' ', Form, ' := ', OutForm,nl]),

derive-behavior(Module, OutForm, Behavior).
/* We have replaced the gate inputs with module variables */

derive-behavior(Module, Form, Behavior)
Form \== 1,
Form .. [F,G],
part(Module, G, Component), % Since we passed the cut, this

% is not a primitive component
% that was previously verified
% due to verify-components in
% verify clause

derived-behavior(Component,Form,OutForm),

writeln(['Applying Derive-Behavior Rule 2B to ', Form,
' of',nl,' nonprimitive component ',Component,':']),

writeln([i' ',Component,''s derived behavior:']),
writeln([' ', Form, ' := ', OutForm]),

derive-behavior(Module,OutForm,Behavior).
/* We have replaced the gate inputs with module variables */

/* The remaining rules cover cases in which FORM is not the */
/* name of a terminal, but is a formula involving such name.
/* This is where additional types of boolean or non-boolean */
/* behavioral rules can be added in future work. These rules*/
/* simplify internal components of a specified behavioral */

A-24

/* structure. NOTE: The evaluatel clause is a simple

/* canonicalizer which should also be modified if new
/* behaviors are added. *

derive-.behavior(Module, neg(Form), Behavior)

(not flag(terse) -

writeln(['Applying Derive-Behavior Rule 3 to ',neg(Form)1)

true),

derive-behavior(Module, Form, Behi),

evaluatel(neg(Behl'), Behavior).

derive-behavior(Module, and(Forml,Form2), Beh)

(not flag(terse) -

writeln(['Applying Derive-Behavior Rule 4 to ',and(Forml,Form2)1)

true),
derive-behavior(Module, Formi, Behi),

derive..behavior(Module, Form2, Beh2),

evaluatel(and(Behl ,Beh2), Beh).

derive-behavior(Module, or(Forml,Form2), Beh)

(not flag(terse) -

writeln(['Applying Derive-Behavior Rule 5 to ',or(Forml,Form2)1)

true),

derive-behavior(Module, Formi, Behi),
derive-behavior(Module, Form2, Beh2),
evaluatel(or(Behl ,Beh2), Beh).

derive-behavior(Module, if(Gond,Texp,Fexp), Beh)

(not flag(terse) -

writeln(['Applying Derive-.Behavior Rule 6 to ',if(Cond,Texp,Fexp)])

true),

derive-behavior(Module, Cond, N~ond),
derive..behavior(Module, Texp, NTexp),
derive..behaivior(Module, Fexp, NFexp),

evaluatel(if(N~ond,NTexp,NFexp), Beh).

A -25

/* SPARKS NOTE:: CHECK THIS */
/* We get an infinite loop when we try to derive the ,/
/* behavior of counter and in(inca(Acounter)) because */
/* in(incA(Acounter)) in(Acounter) fails occurs check */

derive-behavior(Module, First + Second, Beh)

(not flag(terse) ->

writeln(['Applying Derive-Behavior Rule 7 to ',First + Second])
I
true),

derive-behavior(Module, First, Behl),
derive-behavior(Module, Second, Beh2),
evaluatel(Behl + Beh2, Beh).

/* The default rules catch behavior which we haven't yet */
/* described in a rule or which shouldn't be described.

derive-behavior(_Module, Form, Form)

(not flag(terse) ->
writeln(['Applying default Derive-Behavior Rule to ',Form])

II
true).

/* primary-source and derived source distinguish between a
/* Module input(primary-source) and a Component input
/* (secondary-source). */

primary-source(Source) -

Source =.. [_,Arg],
var(Arg).

derivedsource(Source) -

Source =.. [_,Arg],
Arg =.. [_,Argz],
var(Arg2).

A-26

A.1.4 derstate.pl

DERSTATE.PL Derive-States

/* The clause derive-states finds a st:ate variable
/* for a Module, how this state variable fits into the */

/* internal structure of the Module, derives the behavior*/
/* of the internal structure, and substitutes uie
1* state variable name for the internal name whenever it */
/* appears in the derived behavior. The state-of,
/* state-map, and state-eqn facts from the specified
/* Module description are used to identify the
/* appropriate variables. Then the two clauses
/* derive-behavior and substitute-state are invoked to */
/* create the desired Next-State.

/* *1

derive-states(Module,State,NextState)
state-of(Module,State,_Type), % this has state information
state-map(Module,State,Internal), % mapped to an internal part
state-eqn(_Part,Internal := NextState), % and the internal state is

% a function of both the
derive-behavior(Module,NextState,Beh), % inputs and previous state
substitutestate(Module,Beh,NextState).

substitute-state

/* This clause uses replace-all to replace occurrences
/* of internal variables with the appropriate external */
/* black-box variable obtained by the state-map fact. */

substitutestate(Module,DerBeh,SubBeh) -

state-map(Module,External,Internal),

writeln([nl,'For module ',Module,':']),
writeln([' Substituting: ', External,' for: ',Internal]),
writeln([' Derived Behavior: ',DerBeh]),
replace.all(Module,Internal,External,DerBeh,SubBeh),
writeln([' New (Substituted) Behavior: ',SubBeh]).

*A**

A -27

replace-all
/* Replaces each occurrence of an internal variable or
/* other variables connected to this internal variable */
/* with the appropriate external black-box variable. */
/* The replace clauses allow you to traverse any type */
/* of behavioral structure and replace the appropriate */
/* variable name. NOTE: New replace clauses will need */
/* to be added with new behavioral structures.

replace-all(Module,Old,New,OldBeh,SubBeh)

replace(Old,New,OldBeh,SB),
(connected(Module,Old,Other)

output-eqn(_Part,Other := Old)),

replace-all(Module,Other,New,SB,NewSB),
evaluatel(NewSB,SubBeh). % Try to simplify further,

% if possible.
replace-all(_Module,_Old,_New,Beh,Beh)

% Module has no more connections!

replace(_Old,_New,Other,Other)

atomic(Other),
(not flag(terse) ->

writeln(['Replace Rule2 -- ',Other,' is atomic'])

true),

replace(_Old,_New,Other,Other)
var(Other),
(not flag(terse) ->

writeln(['Replace Rule3 -- ',Other,' is a variable'])

true),

replace(Old,_New,Other,Other)
Old =.. [F,_Argl], % keeps in(X) = in(incA(X))
Other =.. [G,Arg2], % from occuring, occurs test

F \== G,
(var(Arg2)

atomic(Arg2)), % this is already simplified

A-28

(not flag(terse) -

writeln(['Replace Rule4 -- ',Other,' has variable/atomic argument'])

true),

replace(Old,New,and(X,Y),and(NewBl,NewB2))
!(not flag(terse) ->

writeln(['Replace Rule ''and'" '])

true),

replace (Old ,New ,X ,NewB1),

replace(Old,New,Y,NewB2).

replace(Old,New,or(X,Y),or(NewBl,NewB2))

!,(not flag(terse) ->

writeln(['Replace Rule "'or" 'D)

true),

replace (Old ,New ,X ,NewBl),

replace (Old ,New ,Y ,NewB2).

replace(Old,New,neg(X) ,neg(NewB))

(not flag(terse) -

writeln(['Replace Rule ''neg'' '1)

true),

replace(Old,New,X,NewB).

replace(Old,New,X + Y,NewBI + NewB2)

(not flag(terse) -

writeln(['Replace Rule ''.'' '1

true),

replace (Old ,New ,X ,NewB1),

replace(Old,New,Y,NewB2).

replace(Old,New,if(Cond,Texp,Fexp) ,if(NewBl,NewB2,NewB3))

(not flag(terse) -

writeln(['Replace Rule ''if'' '1)

true),

A-29

replace (Old ,New ,Cond ,NewB1),

replace(Old,New,Texp,NewB2),

replace(Old,New,Fexp,NewB3).

replace(Old,New,Other,NewB) 7.in(X) /~in(incAX))
Old =.. [F,Argl],

Other =.. [F,Arg2],

(var(Argl),
not var(Arg2) % only one can be var

not var(Argl),
var(Arg2)

replace (Old ,New ,Arg2 ,NewArgs),

NewB [. F,NewArgs], % Old behavior, or Old behavior

(not flag(terse) ->

writeln(['Replace Rule '"structure' '))

true),

% is some other nested structurer

replace(Old,New,Old,New) %, If you find X replace with Y

(not flag(terse) ->

writeln(['Replace Rule 1I- replace ',Old,' with ',New])

true),

replaceQ-Old,-New,Other,Other)

(not flag(terse) ->

writeln(['Default Rule'])

true). %Default replace rule.

A-30

A.1.5 eqbeh.pl

EQBEH.PL Equal-Behaviors
/* This file contains procedures necessary to determine */
/* the equivalence of a derived behavior(next state) and */
/* specified behavior(next state).
/* The equal-behaviors and equal-states clauses are used */
/* by derive.and-equate-behaviors and derive-and.equate_ */
/* states to provide for every output/state equivalence. */

/* The primary methods of equivalence determination used */
/* are simiplification and boolean expansion. The eqb */
/* clauses may expansion in future work.

equal-behaviors(Module,Output,Derived_Beh) -

output-eqn(Module,Output := SpecifiedBeh), % get specified behavior
eqb(Module,DerivedBeh,Specified.Beh).

equal-states(Module,Nextstate,DerivedState) -

state-eqn(Module,Nextstate := Function), % get specified state
eqb(Module,DerivedState,Function).

TRIVIAL IDENTITY

eqb(_M,X,X)

/* BOOLEAN EXPANSION
/* The clause eq(NewDB,NewSB) is the driver for the code */
/* found in boole2.pro which performs CPT Dukes boolean */

/* expansion.

eqb(_M,DB,SB)

/* expandable(M), fewer than to-be-determined combinations */
/* and boolean variables

evaluate-dukes(DB,NewDB),
evaluate-dukes(SB,NewSB),
nl,
writeln(['Does ',NewDB,' =']),

writeln([' ',NewSB,' ???',nl]),

A-31

eq(NewDB,NewSB),

writeln([' ,B)

writeln([' By Boolean Expansion',nl]),

expandable(M) 'Asome how-many function will
port(M,-,-.,boole), Xbe required

XNot currently used

1* SIMPLIFICATION

eqb(M,DB,SB)

evaluatel(DB,NDB),

evaluatel(SB,NSB),

(DB \ NDB

SB \=NSB)

writeln(['Derived behavior is: ',DBI),
eqb(M,NDB,NSB), I

nl.

A-32

A.4.6 eval.pl

/***
EVAL.PL Evaluate

/* This file performs a rudimentary simplification and */
/* and canonicalization on behavioral structures.
/* Any new behavioral structures added will require
/* additional evaluate-brown clauses.

/$**************$*$******$*********•$***************$***********/

evaluatel(X,EX)
evaluate-brown(X,EX),

(not flag(terse) ->
(writeln(['Value of ',X,':']),

((X==EX) ->
writeln([' is already canonical.'])

I
otherwise ->

writeln([' ',EX,nl])))

((X\==EX) ->

(writeln(['Value of ',X,':']),
writeln([' ',EX,nl]))

I

true)).

/***

/* The first three clau3es provide basis casrýL for a */
/* behavioral structure, namely a Variable, Atom, or an
/* elementary structure.

/***

evaluatebrown(X,X)
var(X),

evaluatebrown(X,X)
atomic(X),

evaluate-brown(Struct,Struct) -

Struct =.. [_F,Arg],

(var(Arg)

atom(Arg)

/**

/* The next five clauses provide a method of simplifying */
/* and canonicalizing the boolean functions and, or, nor,
/* nand, and negation. Another canonical form may prove */
/* quicker and these clauses would need to be modified
1* accordingly. */

r, ,1

/* NOTE: neg was originally chosen as the negation */
1* functor, as opposed to the more widely used not, since */

/* Prolog-1 defines not as the absence of a fact. The
/* functor not/i isn't provided in Pure Prolog and thus */

/* does not exist in Quintus Prolog. Since the program */
/, was moved to Quintus Prolog, not is now defined in the */
/* file qops.pl, along with other utility predicates.

evaluate-brown(and(X,Y),Value) %- % To evaluate and(X,Y), we evaluate
evaluate-brown(X,EX), % both X and Y, and then evaluate
evaluate-brown(Y,EY), % the 'and' operation
((EX = 0

EY = 0),

Value = 0

EX = 1,

Value = EY

EY = 1,

Value = EX

Value = and(EX,EY)

evaluatebrown(or(X,Y),Value)

evaluatebrown(X,EX),

-31I

evaluate-brown(Y,EY),

((EX= 1

EY = 1),

Value = 1

EX = 0,

Value =EY

EY = 0,

Value = EX

Value =or(EX,EY)

evaluate-brown(neg(X) ,Value)

evaluate-brown(X,EX),
(var(EX),

Value =neg(X)

EX =0,

Value = 1

EX = 1,

Value =0

atom(EX),

Value =neg(EX)

EX = neg(N),

Value = N

EX = and(A1,A2),

evaluate-brown(neg(A1) ,NA1),

evaluate-brown(neg(A2) ,NA2),

A-35

Value = or(NA1,NA2)

EX = or(01,02),

evaluate-brown(neg(Ol),NO1),

evaluate-brown(neg(02),NO2),

Value = and(NOINO2)

Value = neg(EX)

/* The remaining clauses provide a method of simplifying

/* and canonicalizing the functions required to verify

/* the fulladder and counter, namely, if and

evaluate-brown(if(CondTexpFexp),Value)

evaluate-brown(CondNCond),

evaluate-brown(TexpNTexp),

evaluate-brown(FexpNFexp),

NCond = 1,

% Condition is true

Value = NTexp % return True exp

NCond = 0,

% If False then

Value = NFexp % return False exp

NTexp = NFexp,

% Condition is irrelevant

Value = NTexp if choices equal

Value = if(NCondNTexpNFexp), otherwise return

% simplified expression.

evaluate-brown(X+YZ)

integer(X),

integer(Y),

Z is X + Y. % force simplification of 1 2 3

A-36

evaluate-brown(X+Y,Z)-

integer(Y), j~X not integer due to cut in previous

Xclause
evaluate-brown(X,NewX),

Z = Y + NewX. % canonicalize with integer first

evaluate-brown(X+Y ,Z)-

evaluate-brown(X ,NewX),

evaluate-brown(Y,NewY),

Z =NewX + NewY.

evaluate-brown(X,X). % default simplification for complex

%. structures like in(incA(X)).

A -3 7

A.1.7 multdyn.pl

/* MULTDYN.PL
/* This file sets the various component-related predicates */
/* as being both multifile and dynamic. Multifile/i allows*/
/* the definitions to be spread across a set of
/* hierarchically consulted files, and dynamic/i allows */
/* assert/i and retract/i to be used on these predicates */
/* by the executing AFITVERIFY system. In order to allow */
/* multifile/i to function as we desire, this file -must- */

/* be reconsulted every time a verification is begun.

• multifile module.name/l, port/4, part/3, output-eqn/2, state-eqn/2,
state.map/3, state-of/3, connected/3.

: dynamic module-name/l, port/4, part/3, output-eqn/2, state-eqn/2,
statemap/3, state-of/3, connected/3.

/* get-top(ComponentFile) clears out all 'old' module-name/l, port/4, */
/* part/3, output.eqn/2, state.eqn/2, state.map/3, state-of/3,
/* and connected/3 clauses before consulting the desired root file */
/* for the top-level component. We check to make sure that the
/* ComponentFile can be found in one of the library directories.

get-top(ComponentFile) "-
check-for-read(ComponentFile),
retractall(module-name(_)), % if yes, then....
retractall(port(.......)), % retract all these dynamic clauses
retractall(part(..,...,)),
retractall(output-eqn(_,_)),
retractall(state.eqn(_,_)),
retractall(state.map(_,_)),

retractall(state-of(.,...)),
retractall(connected(....)),
retractall(flag(loaded,_)),
no-style-check(discontiguous), % Turn off checking for procedures whose

% clauses are not all adjacent to one
% another in the file.

no-style-check(multiple), % Turn off checking for multiple
% definitions of the same procedure in

% different files.
consult(library(ComponentFile)),

A-38

style-check(all).

get-topQ-ComponentFile)-

do-verify.

A - 39

A.1.8 opentail.pl

OPENTAIL.PL
1* T his file contains various utilities for operating

/*on lists with variable (open) tails.

/* add..to-opentailset(OpenTailList,NewElement) will return OpenTailList *
/* with the variable at its tail instantiated to [NewElementlNewVar], *

/*as long as NewElement was not already an element of OpenTailList. *

add-to..opentailset([NewElementl-Tail] ,NewElement)

add-.to..opentailset(L-HeadITail] ,NewElement)

var (Tail),

Tail=[NewElement i-NewTail].

add-to-.opentailset(L.HeadtTail] ,NewElement)

nonvar (Tail),

add-to-opentailset (Tail ,NewElement).

/* convert-to-.notail(OpenTailList,GlosedList) converts a list with *
/*an open (variable) tail to a standard closed list

convert-to-.notail([Head ITail] ,[Head INewTaill)

nonvar (Tail),

convert-to-notail (Tail ,NewTail).

convert-to-.notail([Head iTail] ,[Head[I [1)
var(Tail).

/* closed-list-.to-string(List,String) *

closed-flatlist-.to-.string([1,' [1')-

closed-flatlist-.to-.string(List,String)

closed-.to-.string..aux(List,' [',String).

closed-.to..string-.aux([Headl []] ,Acc,String)
string..append(Acc ,Head, NewString),

A-'10

string-append(NewString,'] ',String).

closed-to-string-aux([HeadlTail] ,Acc,String)

string-append(Acc ,Head ,Temp),

string .append(Temp,' ,' ,NewString),

closed-to-string-aux (Tail ,NewString,String).

A-41

A.1.9 qops.pl

*** ,1

QOPS.PL
/* This file provides the utility and operator definitions */
/* to run verify.pl on Quintus Prolog. The :- multifile */
/* definition was required to allow Modules to be declared */
/* in separate .pl files. Without this definition, any */
/* new module loaded would wipe out the previously loaded */
/* modules, and in the case of a fulladder (multiple file) */
/* this was a problem (The defn of nand2 and xor was gone) */
/* Operator precedence in Quintus and also pure Prolog
/* goes from 0-1200, but Prolog-I runs 0-255 (Prolog-i
/* refman 5.5, Bratko p.1 8 2).

/* This file also provides the procedure definitions which */
/* access the file system through the Quintus stream-based */
/* file operations. These procedures are discussed below. */

/* Be sure that the following Quintus libraries are loaded: */

"ensure-loaded(library(readconst)).
"ensure-loaded(library(strings)).
ensure-loaded(library(prompt)).
"ensure-loaded(library(ask)).
"ensure-loaded(library(basics)).
"ensure-loaded(library(files)).

/* make sure that flag/i is defined as a dynamic predicate */

"- dynamic flag/i.

/* --------- UTILITIES -------------------------

writeln([])
hi.

writeln([nllRest]) %- % provide a means of specifying a nl

nl,
writeln(Rest).

writeln([XlRest])

A-42

write(X),
writeln(Rest).

writeln([LI).

/* -------- OPERATORS -------------------------

"- unknown(Unknowns,fail). /* Modified from (trace,fail)

/* Kevin Sparks's implementation of not/i for Quintus Prolog
/* Removed in order to use a Quintus-derived implementation of not */
/* ?- op(iO0, fy, not).
/* not X :-

X,!,fail

true.

/* Definition of not/i for Quintus Prolog.
/* Note that this does not check for free variables. Use Quintus */
/* Library not.pl for not/i if this is necessary. */

: op(900,fy,not). % Same as \+ builtin predicate

not(Goal) -
\+ call(Goal).

: op(900, xfx, :=).
- op(800, fx, if).

/* ---------- FILE OPERATIONS -------------------

/* This contains various predicates which use the Quintus stream-based
/* file operations to read, write, and append information to files. See */
/* Quintus Prolog Reference Manual sections 5-i-* for more info on these */
/* operations.
/* get-verified-parts opens the file modfiles.list and reads

and returns the open list of module file */
names

/* save-verified-parts opens the file modfiles.list and writes */
the open list of verified module files */

A-43

/* load-known-parts opens the file verified.parts and loads
the flag(verified(partname)) terms into *1
working memory

/* list-known-parts writes each part with flag(verified(part)) */
to screen

/* read-in-ver(Stream) helper procedure that reads terms from file */

Stream, asserting them as
flag(verified(parts))until EOF is reached */

/* update.known-parts opens the file verified.parts and adds any */
additional flag(verified(partname)) */
clauses into this file

/* write-parts(Stream) helper procedure that writes
flag(verified(part) clauses from working */
memory into Stream

/* copv new-module(ModuleFileName) uses UNIX cp command to move a
copy of ModuleFileName into the Parts
library

/* save-new-module(ModuleFileName) opens the file ModuleFileName and */
creates a copy in the Parts library

/* load-in(FileName) used in a component file to load (if */
necessary) any subordinate component files.*/

/* extract-old-module(ModuleFileName) uses UNIX cp command to move a */
copy of ModuleFileName from the Parts
directory to the user's current directory */

/* check-for-read(TopFileName) checks if TopFileName can be located

for read access along the library path

get-verified-parts(PartsOpenList) -

open(library('modfiles.list'),read,MFile),

read(MFile,PartsOpenList),
close(MFile).

save-verified-parts(PartsOpenList) -

open(library('modfiles.list'),write,MFile),

write-canonical(MFile,PartsOpenList),
write(MFile,'.'),
nl(MFile),
close(MFile).

load-known-parts -

open(library('parts.verified'),read, CFile),

read-in-ver(CFile),
close(CFile),

A-44

asserta(flag(parts.loaded)),

list.known-parts.

/* ListKnownParts/O lists each part that is in current working memory */

list-known-parts:-
nl,
not flag(verified(_X)),

writeln(['No parts have been verified during this session.']).

list-known-parts :-
flag(verified(X)),
writeln(['The part "',X,

"" has been previously verified during this session.']),
fail
I
true.

/* Read-in-ver(Stream) reads a term from the given Stream, asserting the */
/* term that is given by the Stream as a flag(verified(ATerm)) fact */
/* in current working memory. This is a helper procedure used to */
/* preload verified parts information into working memory.

read-in-ver(Stream) "-
read(Stream,ATerm),
(ATerm == endof_file

((not flag(verified(ATerm)) ->

asserta(flag(verified(ATerm)))

true),
readinver(Stream)

)

/* UpdateKnownParts saves the current state of the flag(verified(X)) */

/* state of working memory memory using flag(was-verified(X)) facts, */
/* adds in any previously stored flag(verified(X)) facts from a file */
/* using read-in-ver/l, stores the new list of flag(verified(X))
/* facts back into a file, and resets the state of working memory to */
/* reflect the set of flag(verified(X)) facts that were saved.

update-known-parts -

A-45

(flag(verified(PartName)),

asserta(flag(was-.verified(PartName))), tsave current list
fail hof verified parts

true),

open(library('parts.verified') ,read, InFile),

readin-ver(InFile),

close(InFile),

open(library('parts.verified') ,write, NewFile),

write-.parts(NewFile),

close (NewFile),
retractall(flag(verifiedCYPN))), Xclean up from file update
(flag(was-verified(PartNaxne2)), . by restoring current

asserta(flag(verified(PartName2))), %list of verified parts

fail

retra~ctall(flag(was-verifiedQ-PNs))))

/* Write-Parts(Stream) writes the names of all parts currently

/*asserted in working memory as flag(verified(PartName)) facts

1*to the current Stream.

write..parts(Stream)

((flag(verified(X)), % find a verified part

write..canonical(Stream,X), % and write its name

wiite(Stream,'.'),

nl(Stream),

fail)

true

/* Copy-New-Nodule(ModuleFileName) uses the UNIX cp command to copy a file *

1* from its original directory into the Parts library directory.

copy-new-module(ModuleFileName)-

library-directory(Dir),

substring(Dir,'Parts',..,J), 7.get path to Parts directory
string..append(Dir, 'I',Dir2),
string..append(Dir2,ModuleFileName,NewFN),

string-.append(NewFN,'.pl',NewFileName), % construct new filename

(file-.exists(NewFileName,exists) ->

writelnC['Sorry, but file ',ModuleFileName,
'.pl is already in the components library.'])

otherwise -

((string..append(' ./',ModuleFileName,RelFN),
absolute-file..name(RelFN,AbsFileName),
(file-.exists(AbsFileNanie, [read,exists]),
string-append('cp ',AbsFileName,Cmndl), %l construct cp command

string-append(Cmndl,' ',Cmnd2),

string-append(Cmnd2 ,NewFileNane ,UnixCommand),

unix(system(UnixCouunand)), % execute UNIX cp command

get-verified-parts(PartsOpenList), %. update file listing

add..to-.opentailset(PartsOpenList ,ModuleFileName),
save-.verified-.parts(PartsOpenList), % of verified parts

update-known-parts % update preverified

%. parts listing file

writeln(['Sorry, but file ',ModuleFileName,
'.pl can''t be found for read.'])

/* Extract-Old...Module(ModuleFileName) uses the UNIX cp command to copy a

file from the Parts library directory to the users current *
1* ~directory. *

extract-old-module(ModuleFileName)-

library-directory(Parts),

substring(Parts,'Parts',-,.j, % get path to Parts directory

string-append(Parts, 'I,,PartsSlash),
string-append(PartsSlash ,ModuleFileNane ,ModFN),

absolute-file-name(ModFN ,AbsModFN),

(file-exists(Abs~odFN) ->

(library.Airectory(Home),

substring(Home,.,-,)
absolute-.file-name(Home,AbsHomeDir), % current user directory
string-append('cp ',AbsModFN,Cmndl), % construct cp command

string-.append(Cmndl,' ',Cmnd2),

string..append(Cmnd2 ,AbsHomeDir ,UnixCommand),

unix(system(UnixCommand)), % execute UNIX cp command

writeln([nl,'Module ',ModuleFileName,

moved to current directory' ,nl]))

otherwise -

writeln([nl, 'ERROR! ',ModuleFileNaxne,' could not be found!'])

/* load-.in(FileName) is used in a component file to load (if *
/* necessary) any subordinate component files.

load-in(FileName) :
(not flag(loaded,FiloNaine) -

(reconsult(library(FileName)), % load one time, then
asserta(flag(loaded,FileName)))) %. flag it

true. % component already loaded

/* check-for-read(ComponentFile) checks if the given ComponentFile *
can be located along the current library path with read access

check-for-.read(ComponentFile)-
library-directory(LibDir),

string..append(LibDir, 'I',ThisDir),
string-.append(ThisDir ,ComponentFile ,RelFN),

absolute-.file-.naine(RelFN,AbsFileName),

file-.exists(AbsFileName, [read,exists]),

check-for-read(ComponentFile)
writeln(['Sorry, but file ',ComponentFile,

'.pl can''t be found for read.',nl]),

do-verify.

A-418

A.2 Par-ts Librar-y Listings

:121parts.verified

half add.

xor.

mux.

reg.

inc.

counter.

faddxor.

aoi.

nor2.

nand5.

nand4.

nand3.

inv.

nand2.

A-4t9

A.2.2 counter.pl

/* Counter.pl

Module definitions for the counter example

1* in Barrow's VERIFY article.

*loadjin(primitive). % get mnc, reg, mux

/* --------------- COUNTER -----------------------

:- retractall(module~naxne(_). %Make sure that THIS is the top module
module-name(counter).

port (counter, inC..ACounter) ,input ,integer).

port(counter ,ctrlQ-ACounter) ,input ,boole).

port (counter ,out (ACounter) ,output ,integer).

part(counter ,muxAQ-ACounter) ,mux).

part(counter,regAC-ACounter) ,reg).
part(counter,incAC.ACounter) ,inc).

connected(counter,ctrl(ACounter) ,switch(muxA(ACounter))).

connected(counter,in(ACounter) ,inl(muxA(ACounter))).

connected(counter,out(muxA(ACounter)) ,in(regA(ACounter))).

connected(counter,out(regA(ACounter)) ,in(incA(ACounter))).

connected(counter ,out (incA(ACounter)) ,inO(muxA(ACounter))).

connected(counter,out(regA(ACounter)) ,out(ACounter)).

/* Behavior Specification */

state-.of (counter ,count(_ACounter) ,integer).

state-map(counter,count(ACounter) ,contents(regA(ACounter))).

output-eqn(counter,
out(A~ounter) count(ACounter))

state..eqn(counter,
count(ACounter) if(ctrl(ACounter),

in(A~ounter),

count(ACounter) + 1)).

A-5()

A1.2.3 faddxor.pl

FADDXOR.PL

/* This file provides the specification of a fulladder *

/* composed of nand and exclusive or gates. The file

/* xor.pro must also be loaded to provide the module
/* specifications for nand2 and xor.

*load-in(primitive). % insure nand2 is loaded
*load-.in(xor). % insure xor is loaded

/* Structural specification for a full adder with xors *

:- retractall(module-nameC.)). % Make sure that THIS is the top module

module-name (faddxor).

port(faddxor,xQ-AFaddxor) ,input ,boole).

port(faddxor,yC-AFaddxor) ,infput ,boole).

port(faddxor,cinC.AFaddxor) ,input,boole).

port(faddxor ,outcarryQ-AFaddxor) ,output ,boole).
port (faddxor,outsum(-AFaddxor) ,output ,boole).

part (faddxor ,gl (.AFaddxor) ,nand2).

part (faddxor,g2 (AFaddxor) ,nand2).

part(faddxor,g3Q-AFaddxor) ,nand2).

part(faddxor,g4C..AFaddxor) ,xor).

part(faddxor,gSC..AFaddxor) -xor).

connected(faddxor,x(Afaddxor) ,inO(gl(Afaddxor))).
connected(faddxor,y(Afaddxor) ,inl(gl(Afaddxor))).

connected(faddxor,cin(Afaddxor) ,inO(g2(Afaddxor))).
connected(faddxor,out(g4(Afaddxor)) ,inl(g2(Afaddxor))).
connected(faddxor,out(gl(Afaddxor)) ,ino(g3(Afaddxor))).

connected(faddxor,out(g2(Afaddxor)) ,inl(g3(Afaddxor))).
connected(faddxor,x(Afaddxor) ,inO(g4(Afaddxor))).

connected(faddxor,y(Afaddxor) ,inl(g4(Afaddxor))).

connected(faddxor,out(g4(Afaddxor)) ,inO(g5(Afaddxor))).

connected(faddxor ,cin(Afaddxor) ,inl(gS(Afaddxor))).
connected(faddxor,out(g5(Afaddxor)) ,outsuin(Afaddxor)).
connected(faddxor ,out (g3(Afaddxor)) ,outcarry(Afaddxor)).

/* Behavioral Specification

A- 51

output ..eqn(faddxor,
outcarry(Afaddxor)

or(and(x(Afaddxor),y(Afaddxor)),

and(cin(Afaddxor),

xor(x(Afaddxor) ,y(Afaddxor))))
output-eqn(faddxor,

outsum(Afaddxor)

xor(xor(x(Afaddxor) ,y(Afaddxor)),

cin(Afaddxor)).

A.2.4 modfiles.pl

* '(xor,'.*'(faddxor,'.'(counter,'.* (inv,'.'(aoi,'.* (halfadd,' '(nand3,' '(nand4,'.*'(nand5

A-53

A.2.5 primitive.pl

PRIMITIVES.PL

/* This file provides the module descriptions for

/*a set of primitive components. Primitive components *

/*are those components which do not use other components *

/* (that is, do not have "parts" clauses). Components *

/* in this file are: nor2, nand2, inc,reg,mux

/* ---- Structural Specification for 2-input nor ---- *

module-name(nor2).

port (nor2,inO (ANor2) ,input ,boole).

port(nor2,inlC-ANor2) ,input,boole).

port (nor2 ,out C.ANor2) ,output ,boole).

/* Behavioral Specification *

output-eqn(nor2,

out(ANor2) := and(neg(inO(ANor2)), neg(inl(Aor2)))

/* -------Structural Specification for 2-input nand ---- *

module-naxne(nand2).

port (nand2,inO QANand2) ,input ,boole).

port(nand2,inlC-ANand2) ,input,boole).

port (nand2 ,out (_.ANand2) ,output ,boole).

/* Behavioral Specification *

output-.eqn(nand2,

out(ANand2) := or(neg(inO(ANand2)), neg(inl(ANand2))))

/----- ----- INCREMENTER -----------------------

module-.name(inc).

port(inc,inC-Anlnc) ,input,integer).

port(inc,outC.Anlnc) ,output,integer).

A-54

/* Behavior Specification *

output-eqn(inc,

out(Anlnc) 1 + in(Anlnc)).

/*----- ---- MULTIPLEXER -----------------------

module-.name(mux).

port (mux,inOC..AMux) ,input, integer).
port (mux,inl C.AMux) ,input,integer).

port (mux ,switchC.AMux) ,input ,boole).

port (mux ,out CAMux) ,output ,integer).

/* Behavior Specification *

output ..eqn(mux,

out(AMux) :=if(switch(AMux),
inl(AMux) ,inO(AMux))).

/----------------REGISTER --------------------

module-.nanie(reg).

port (reg,inC.AReg) ,input ,integer).
port (reg ,out (.AReg) ,output ,integer).

/* Behavior Specification */

state-.of(reg,contentsC..AReg) ,integer).

output-.eqn(reg,

out(AReg) :=contents(AReg)).

state-.eqn~reg,

contents(AReg) :=in(AReg)).

A-55

A.2.6 xor.pl

f~~c XOR.PL *
/* This file provides the module descriptions for *
/* exclusive ors. This file is required when verifying a *
/* fulladder. This file requires the loading of *

/*a set of primative components which includes a 2-input *

f/c nand. *

*load-in(primitive). %. insure nand2 is loaded

/* Structural specification for a two-input exclusive or

:- retractall(module-nameC-)). % Make sure that THIS is the top module

module-.name(xor).

port(xor,inOC.AnXor) ,input,boole).

port (xor , ml CAnXor) ,input,boole).
port (xor,out(-AnXor) ,output ,boole).

part (xor,gl C.AnXor) ,nand2).

part Cxor,g2(_.AnXor) ,nand2).

part (xor,g3 C.AnXor) ,nand2).

part (xor,g4C.AnXor) ,nand2).

connected(xor,inO(AnXor) ,inO(gl(AnXor))).

connected(xor,inl(AnXor) ,inl(gl(AnXor))).

connected(xor ,inO(AnXor) ,inO(g2(AnXor))).

connected(xor,out(gl(AnXor)) ,inl(g2(AnXor))).

connected(xor,out(gl(AnXor)) ,inO(g3(AnXor))).

connected(xor,inl(AnXor) ,inl(g3(AnXor))).

connected(xor,out(g2(AnXor)) ,inO(g4(AnXor))).

connected(xor,out(g3(AnXor)) ,inl(g4(AnXor))).

connected(xor,out(g4(AnXor)) ,out(AnXor)).

/* Behavioral Specification for a two-input XOR *

output-eqn(xor,

out(AnXor) :=or(and(neg(inO(AnXor)),

inl(AnXor))
and(inO(AnXor),

neg(inl(AnXor))))

A -56

Al.2.7 inv.pl

INV.PL
/* This file provides the module descriptions for

/*an inverter constructed from a 2-input nand. This

/* file requires the loading of a set of primitive
/* components which includes a 2-input nand.

*load-.in(primitive). % insure nand2 is loaded

/* Structural specification for an inverter

:- retractall(module-.name(-j). %Make sure that THIS is the top module

module-name(inv).

port(inv,inQ-Anlnverter) ,input,boole).

port(inv,outC.Anlnverter) ,output ,boole).

part(inv,glC-Anlnverter) ,nand2).

connected(inv,in(Anlnverter) ,inO(gl(Anlnverter))).

connected(inv,in(Anlnverter) ,inl(gl(Anlnverter))).

connected(inv,out(gl(Anlnverter)) ,out(Anlnverter)).

/* Behavioral Specification for an inverter */

output-eqn(inv, out(Anlnverter) :=neg(in(Anmnverter))).

A.2.8 aoi.pl

And-Or-Invert

/* And-Or-Invert Module, as per Zycad library, pg 10-49 *

*load-in(primitive). % get nor2
*load-in(inv). % get inverter

/*---------------- AOI-------------------------

:- retractall(module-name(-j). % Make sure that THIS is the top module
module-naine(aoi).

port(aoi,inOQ-AnAOI) ,input,boole).

port(aoi,inlC..AnAOI) ,input,boole).

port(aoi,in2C-AnAOI) ,input,boole).

port(aoi,outC-AnAOI) ,output,boole).

part(aoi,nor2-1(.AnAOI) ,nor2).

part(aoi,nor2-2C.AnAOI) ,nor2).

part(aoi,inv-l-AnAOI) ,inv).

part(aoi,inv-2C-AnAOI) ,inv).

connected(aoi,in0(AnAOI) ,in(inv-l(AnAOI))).

connected(aoi,inl(AnAOI) ,in(inv-.2(AnAOI))).
connected(aoi,out(inv-..(AnAOI)) ,in0(nor2_.1(AnAOI))).

connected(aoi,out(inv-2(AnAOI)) ,inl(nor2_.1(AnAOI))).
connected(aoi,out(nor2-l(AnAOI)) ,in0(nor2-.2(AnAOI))).

connected(aoi,in2(AnAOI) ,inl(nor2..2(AnAOI))).

connected(aoi,out(nor2-2(AnAOI)) ,out(AnAOI)).

/* Behavioral Specification

output-eqn~aoi, out(AnAOI) :=neg(or(and(in0(AnAOI),

inl(AnAOI)),

in2(AnAOI))))

A -58

A.2.9 halfadd.pl

HALFADD.PL

/* This file implements a simple half-adder that *
/* is built from inverters and 2 input nand gates. *
/* It is based upon a Zycad VHDL file written by *

/* Capt Dave Banton, which is attached below the *
/* Prolog code. *

*load-in(primitive). % get nand2

*load-in(inv). % get inverter

/*----------------halfadd -------------------------

:- retractall(module-nameC.)). % Make sure that THIS is the top module

module-.name(half add).

port(halfadd,inOQ-HafAdder).,input,boole). % bit 0 (low-order bit)
port(halfadd,inlQ-HalfAdder),input,boole). % bit 1. (high-order bit)
port (half add,sumC..HalfAdder) ,output ,boole).

port (half add,carry(..Half Adder) ,output ,boole).

part (half add, inv-SCHalf Adder) ,inv).

part (half add, inv- 1(-RalfAdder) ,inv).
part (half add, inv-2 (-Half Adder) ,inv).

part (half add,nand2.0C..HalfAdder) ,nand2).

part (half add,nand2-lC.HalfAdder) ,nand2).

part (half add,nand2-.2 C.HalfAdder) ,nand2).

part (halfadd,nand2..3C.HalfAdder) ,nand2).

connected~halfadd,in0(HalfAddNand) ,in(inv-.O(HalfAddNand))).
connected(halfadd,out(inv-..(HalfAddNand)) ,inl(nand2-l(HalfAddNand))).

connected(halfadd,inl(HalfAddNand) ,in(inv-..(HalfAddNand))).
connected(halfadd,out(inv-l(HalfAddNand)) ,in1(nand2..0(HalfAddNand))).

connected(half add, in0(HalfAddNand) ,inO(nand2..0(HalfAddNand))).

connected(halfadd,out(nand2-..(HalfAddNand)) ,in0(nand2..2(HalfAddNand))).

connected(halfadd,inl(HalfAddNand) ,in0(nand2_1(HalfkddNand))).

connected(halfadd,out(nand2-l(HalfAddNand)) ,inl(nand2..2(HalfAddNand))).

A -59

connected(halfadd,out(nand2_2(HalfAddNand)),sum(HalfAddNand)).

connected(halfadd,inO(HalfAddNand),inO(nand2_3(HalfAddNand))).
connected(halfadd,inl(HalfAddNand),inl(nand2_33(HalfAddNand))).
connected(halfadd,out(nand2_3(HalfAddNand)),in(inv_2(HalfAddNand))).

connected(halfadd,out (inv_2(HalfAddNand)) ,carry(HalfAddNand)).

/* Behavioral Specification for an half adder */

output-eqn(halfadd,

sum(HalfAddNand) := or(and(neg(inO(HalfAddNand)),
inl(HalfAddNand)),

and(inO(HalfAddNand),

neg(inl(HalfAddNand))))).

output-eqn(halfadd,
carry(HalfAddNand) := and(inO(HalfAddNand),

inl(HalfAddNand))).

--- Adapted from Zycad VHDL File:

-- DATE: 23 May 1991
-- VERSION: 1
-- UNIX FILENAME: half -adder.vhalfadd
-- FUNCTION: This file is a structural description of a half-adder.

-- AUTHOR: dwb (Capt David Banton)

library ZYCAD;
use ZYCAD.TYPES.all;
use ZYCAD.COMPONENTS.all;

-- THE ENTITY DECLARATION:

entity half-adder is -- half adder
port(Input: In MVL7_Vector (1 to 2); -- input

Sum, -- sum

Carry: Out MVL7); -- carry
end half-adder;

-- THE ARCHITECTURAL BODY:

architecture Structural of half-adder is

A-60

signal Si, S2, S3, S4, S5: MVL7;

component invgate -- inverter
generic (tLH: Time; -- rise inertial delay

tHL: Time); -- fall inertial delay
port (Input: In MVL7; -- input

Output: Out MVL7); -- output
end component;

component nandgate -- N input NAND gate
generic (N: Positive; -- number of inputs

tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay

port (Input: In MVL7_Vector (1 to N); -- input
Output: Out MVL7); -- output

end component;

begin

Ul: invgate generic map (1 ns, 1 ns)
port map (Input(i), Si);

U2: invgate generic map (1 ns, 1 ns)
port map (Input(2), S2);

U3: nandgate generic map (2, 2 ns, 2 ns)
port map (Input(l) => Input(1), Input(2) => S2,

Output => S3);
U4: nandgate generic map (2, 2 ns, 2 ns)

port map (Input(i) => Input(2), Input(2) => Si,
Output => S4);

U5: nandgate generic map (2, 2 ns, 2 ns)
port map (Input(i) => S3, Input (2) => S4,

Output => Sum);
U6: nandgate generic map (2, 2 ns, 2 ns)

port map (Input(1) => Input(i), Input(2) => Input(2),
Output => S5);

U7: invgate generic map (1 ns, 1 ns)
port map (S5, Carry);

end Structural;

-- FUNCTION: This file contains the test bench for
- - half-adder.vhalfadd.

-- AUTHOR: dwb (Capt David Banton)

library ZYCAD;
use ZYCAD.TYPES.all;

A-61

use ZYCAD.COMPONENTS.all;

-- THE ENTITY DECLARATION:
entity half-adder-test-bench is
end half.adder.test.bench;

-- THE ARCHITECTURAL BODY:
architecture test of half-adder-test-bench is

component half-adder
port(Input: In MVL7_Vector (1 to 2);

Sum,
Carry: Out MVL7);

end component;

signal Input: MVL7_Vector (1 to 2);
signal Sum, Carry: MVL7;

signal stop.sim: boolean := FALSE;

begin
Problem: half-adder port map (Input, Sum, Carry);

Input <= "00", "01" after 50 ns,
"10" after 100 ns, "11" after 150 ns;

stop-sim <= TRUE after 200 ns;

STOP-CONTROL: process
begin
wait until stop-sim = TRUE;
assert false report "Simulation Done" severity failure:.

end process STOP-CONTROL;
end test;

-- FUNCTION: This is the configuration specification file for
-- half-add'ir.vhalfadd.
-- AUTHOR: dwb (Capt David Banton)

-- THE CONFIGURATION DECLARATION:

configuration half-adder.system of half-adder-test.bench is
for test
end for;

end half-adder.system;

A-62

A1.2.10 nand3.pl

NAND3.PL *

*load-in(primitive). % get nand2
*load-in(inv). % get inverter

/*---------------- NAND3-------------------------*

:- retractall(module-nameCD)). % Make sure that THIS is the top module

module-naine(nand3).

port (nand3,inO(-NAND3) ,input,boole).
port(nand3,in1C-NAND3) ,input,boole).

port (nand3 ,in2 (.NAND3) ,input ,boole).

port (nand3,out (_NAND3) ,output ,boole).

part (nand3,nand2-l(-NAND3) ,nand2).

part (nand3,nand2-2(-NAND3) ,nand2).

part (nand3,invOC..NAND3) ,inv).

connected(nand3,inO(TheNAND3) ,inO(nand2il(TheNAND3))).

connected(nand3,inl(TheNAND3) ,inl(nand2il(TheNAND3))).

connected(nand3,out(nand2-l(TheNAND3)) ,in(invO(TheNAND3))).

connected(nand3,out(invO(TheNAND3)) ,inO(nand2-2(TheNAND3))).

connected(nand3,in2(TheNAND3) ,inl(nand2-2(TheNAND3))).

connected(nand3,out(nand2-2(TheNAND3)) ,out(TheNAND3)).

f* Behavioral Specification

output-eqn(nand3, out(TheNAND3) 7=neg(and(and(ino(TheNAND3),

inl(TheNAND3)),
in2(TheNAND3))))

A -63

A.2.11 nand4.pl

1* NAND4.PL

load-in(primitive). 7.get nand2
load-in(inv). %. get inverter

/---------------- NAND4-------------------------*

:-retractall(module-nameC-)). %Make sure that THIS is the top module
module-name (nand4).

port (nand4, inOQ-NAND4) ,input ,boole).

port (nand4 ,inl (NAND4) ,input ,boole).
port (nand4 ,in2Q-NAND4) ,input ,boole).

port (nand4, in3Q-NAND4) ,input ,boole).

port (nand4 ,out(_NAND4) ,output, boole).

part(nand4,nand2..lQNAND4) ,nand2).

part (nand4,nand2-.2 (-.NAND4) ,nand2).
part (nand4,nand2-3C.NAND4) ,nand2).
part(nand4,invOQ-NAND4) ,inv).
part(nand4,inv1lQNAND4) ,inv).

connected(nand4,inO(TheNAND4) ,inO(nand2_1(TheNAND4))).

connected(nand4,inl(TheNAND4) ,inl(nand2-l(TheNAND4))).

connected(nand4 ,out(nand2-l(TheNAND4)) ,in(invO(TheNAND4))).

connected(nand4 ,out(invO(TheNAND4)) ,inO(nand2..2(TheNAND4))).

connected(nand4, in2(TheNAND4) ,inO(nand2-3(TheNAND4))).

connected(nand4,in3(TheNAND4) ,inl(nand2..3(TheNAND4))).

connected(nand4,out(nand2-3(TheNAND4)) ,in(invl(TheNAND4))).
connected(nand4,out(invl(TheNAND4)) ,inl(nand2-.2(TheNAND4))).

connected (nand4,out (nand2-2(TheNAND4)) ,out (TheNAND4)).

/* Behavioral Specification *

output-eqn(nand4, out(TheNAND4) neg(and(and(inO(TheNAND4),

nl (TheNAND4)),
and(in2(TheNAND4),

in3(TheNAND4))))

A -64

A.2.12 nand5.pl

NAND5.PL

*load..in(nand3). %h get nand3
*load-in(inv). % get inverter

/*--------------------- NAND5-------------------------*

:- retractall(module-nameC-)). % Make sure that THIS is the top module
module..name(nand5).

port (nand5 ,inO(-NAND5) ,input ,boole).
port (narid5,inl QNAND5) ,input ,boole).

port(nand5,in2C.NAND5) ,input ,boole).
port (nand5, in3(-NAND5) ,inu,boole).

port (nand5, in4C-NAND5) ,input ,boole).

port(nandS ,out QNAND5) ,output ,boole).

part (nand5,nand3..lQNAND5) ,nand3).
part (nand5,nand3.2C-NAND5) ,nand3).

part (naind5,invO (NAND5) ,inv).

cor.nected(nand5 ,inO(TheNAND5) ,inO(nand3-l(TheNAND5))).
connected(nand5,inl (TheNAND5) ,inl(nand3-l(TheNAND5))).

connected (nand , in2(TheNAND5) ,in2(nand3-l(TheNAND5))).

connected(nand5,out(nand3-.l(TheNAND5)) ,in(invO(TheNAND5))).
connected(nandS ,out (invO(TheNAND5)) ,inO(nand3..2(TheNANDS))).

connected (nand , in3(TheNAND5) .ini (nand3..2 (TheNAND5))).
connected(nand5, in4(TheNAND5) ,in2(nand3-.2(TheNAND5))).

connected(nand5 ,out (nand3-.2(TheNANDS)) ,out(TheNAND5)).

/* Behavioral Specification

output-eqn(nands, out(TheNAND5) :=neg(and(and(inO(TheNAND5),

inl(TheNANDS)),

and(in2(TheNAND5),
and(in3(TheNAND5),

in4(TheNAND5)))))

A-65

A.2.13 mux-4xi.pl

MUX4xl.PL

/* This file implements a 4-to-i multiplexor that *

/* is built from inverters and 2-to-i multiplexors. *
/* It is based upon a Zycad VHDL file written by *
/* Capt Dave Banton, which is attached below the *

/* Prolog code.

load-.in(primitive). % get mux (2x1)

load-in(inv). % get inverter

/*--------------------- MUX4xi-------------------------*

:-retract all(module..name U)) % Make sure that THIS is the top module
module-.name(mux4xi).

port (mux4xi .inO C.Mx),nut4,inegr.

port (mux4xli l (-Mux4) ,input, integer).

port (mux4x , in2(..Mux4) ,input, integer).

port (mux4x , in3(-.Mux4) ,input, integer).

port (mux4x , selO(-Mux4) ,input ,boole). % bit 0 (low-order)

port(mux4xi,seliC.Mux4),input,boole). %. bit 1 (high order)

port (mux4xi ,out CMux4) ,output~itr..

part(mux4xi,inv_1(_Mux4) ,inv).

part(mux4xi,inv_.2C.Mux4) ,inv).

part(mux4xi,mux2..OC.Eux4) ,mux).

part(mux4xi,mux2_1C.nux4) ,mux).

part(mux4xi,mux2..2(..Rux4) ,mux).

% registers added to aid in writing
% the output equation (they have no
% intrinsic effect upon the operation)

part(mux4xi,reg_..(_Mux4) ,reg).

part(mux4xi,reg_1C.Mux4) ,reg).

part (mux4xl ,reg_.2QMux4) ,reg).

connected(mux4xi ,inOlNux4xi) ,in0(mux2-..(Mux4xi))).

connected(mux4xi ,ini(Mux4xi) ,ini(mux2_.0(Mux4xi))).

connected(mux4x , in2(Kux4xi) ,in0(mux2-l(Mux4xi))).

connected(mux4xi ,in3(Nux4xi) ,ini(mux2_1GMux4xi))).

connected(mux4xi ,out(mux2-..(Mux4xi)) ,in(reg-0(Mux4xi))).

A-66

connected(mux4xl,out(reg-.O(Mux4xl)) ,inO(mux2..2(Mux4xl))).

connected(mux4xl,out(mux2-A(Mux4xl)) ,in(reg-.lOMux4xl))).

connected(mux4xl ,out (reg-A(Mux4xl)) ,inl~mux2-.2(Mux4xl))).

connected(mux4xl,out(mux2-.2(Mux4xl)) ,in(inv-j(Mux4xl))).

connected(mux4xl ,selO(Mux4xl) ,switch(mux2-.O(Mux4xl))).

connected(mux4xl ,selO(Mux4xl) ,switch(mux2-j(Mux4xl))).

connected(mux4xl,sell(Mux4xl) ,switch(mux2-.2(Mux4xl))).

connected(mux4xl,out(inv-l.(Mux4xl)) ,in(inv-.2(Mux4xl))).

connected(mux4xl,out(inv-2(Mux4xl)) ,in(reg-.2(Mux4xl))).

connected(mux4xl,out(reg-.2(Mux4xl)) ,out(Mux4xl)).

/* Behavioral Specification

state-of (mux4xl ,out-.valueC..Mux4) ,integer).

state-.map(mux4xl,out-.value(Mux4xl) ,contents(reg-.2(Mux4xl))).

state-of (mux4xl ,out-.rl (-Mux4) ,integer).

state-map(mux4xl,out-.rl(Mux4xl) ,contents(regjl(Mux4xl))).

state-of(mux4xl ,out-.rOC.Mux4) ,integer).

state-.map(mux4xl,out-.rO(Mux4xl) ,contents(reg-.O(Mux4xl))).

state-eqn(mux4xl,out-.value(Mux4xl) : if(seli(Mux4xl),,

out-.rl(Mux4xl),

out-.rO(Mux4x1)).

state-.eqn(mux4xl,out-.rO(Mux4xl) if(selO(Mux4xl),

in3(Mux4xl) ,in2(Mux4xl))).

state-.eqn(mux4xl ,out-rl(Mux4xl) :if(selO(Mux4xl),

inO(Mux4xl) ,inl(Mux4xl))).

output-eqn (mux4xl,
out(Mux4xl) :=out-.value(Mux4xl)).

--Adapted from Zycad VHDL File:

-- DATE: 31 July 1991

-- VERSION: 1

-- UNIX FILENAME: mux4xl-entity.vhd

-- FUNCTION: This file contains the entity and structural

-- architecture of a 4x1 mux.

-- AUTHOR: dwb (Capt David Banton)

library ZYCAD;

A-67

use ZYCAD.TYPES.all;
use ZYCAD.COMPONENTS.all;

-- THE ENTITY DECLARATION:

entity mux4Xl is -- 4 by 1 multiplexer
port(InO, -- data input 0

Inl, -- data input 1
In2, -- data input 2
In3: In MVL7; -- data input 3
Sel: In MVL7_Vector (1 downto 0);

-- select input (?? => In??)

Output: Out MVL7); -- output
end mux4Xl;

-- THE ARCHITECTURAL BODY:

architecture Structural of mux4X1 is

signal SO, SI, TempOutput, Outputnot: MVL7;

component invgate -- inverter
generic (tLH: Time; -- rise inertial delay

tHL: Time); -- fall inertial delay
port (Input: In MVL7; -- input

Output: Out MVL7); -- output

end component;

component mux2Xl -- 2 by 1 multiplexer
generic (tLH: Time; -- rise inertial delay

tHL: Time); -- fall inertial delay
port (InO, -- data input 0

Inl, -- data input 1
Sel: In MVL7; -- select inpat (0=>InO)

Output: Out MVL7); -- output
end component;

begin
UO: mux2X1 generic map (I ns, 1 ns)

port map (InO, Inl, Sel(O), SO);
Ul: mux2X1 generic map (1 ns, 1 ns)

port map (In2, In3, Sel(O), SI);
U2: mux2X1 generic map (1 ns, I ns)

port map (SO, S1, Sel(1), TempOutput);
U3: invgate generic map (I ns, 1 ns)

A-68

port map (TempOutput, Outputnot);
U4: invgate generic map (1 ns, 1 ns)

port map (Outputnot, Output);
end Structural;

A-69

A.2.14 half add.pl

HALFADD.PL

/* This file implements a simple half-adder that *
/* is built from inverters and 2 input nand gates. *
/* It is based upon a Zycad VHDL file written by *
/* Capt Dave Banton, which is attached below the *

/* Prolog code.

*load-.in(primitive). % get nand2

*load-.in(inv). % get inverter

/*-------------------- halfadd-------------------------

:- retractall(module-naineC.)). %. Make sure that THIS is the top module
module~name (half add).

port(halfadd,inOQ-HalfAdder),input,boole). % bit 0 (low-order bit)
port(halfadd,inlQ-HalfAdder),input,boole). % bit 1 (high-order bit)

port (half add, suinC.Half Adder) ,output ,boole).

port (half add, carry (Half Adder) ,output ,boole).

part (half add, inv-OC.Half Adder) ,inv).

part (half add, inv-l QHalf Adder) ,inv).

part (half add, inv-2 (Half Adder) ,inv).

part (half add,nand2-.OC.HalfAdder) ,nand2).

part (half add,nand2-lC.HalfAdder) ,nand2).

part (half add ,nand2..2(_HalfAdder) ,nand2).

part (half add ,nand2..3CHalfAdder) ,nand2).

connected(half add, inO(HalfAddNand) ,in(inv-..(HalfAddNand))).

connected(half add ,out (inv_..(HalfAddNand)) ,inl(nand2- (HalfAddNand))).

connected(half add,iml (HalfAddNand) ,in(inv-l(HalfAddNand))).

connected(halfadd,out(inv-j(HalfAddNand)) ,inl(nand2-.O(HalfAddNand))).

connected(half add, inO(HalfAddNand) ,in0(nand2-.O(HalfAddNand))).

connected(half add ,out (nand2..O(HalfAddNand)) ,in0(nand2..2(HalfAddNand))).

connected(half add,inl (HalfAddNand) ,in0(nand2-l(Half AddNand))).

connected(halfadd,out(nand2-l(HalfAddNand)) ,inl(nand2..2(HalfAddNand))).

A-70

connected(halfadd,out (nand2-.2(HalfAddNand)) ,sum(HalfAddNand)).

connected(half add, inO(HalfAddNand) ,inO(nand2_.3(HalfAddNand))).

conxiected(half add,inl (HalfAddNand) ,inl (nand2-.3(HalfAddNand))).

connected(halfadd,out (nand2..3(HalfAddNand)) ,in(inv-.2(HalfAddNand))).

connected(halfadd,out(inv-.2(HalfAddNand)) ,carry(HalfAddNand)).

/* Behavioral Specification for ani half adder *

output-.eqn(half add,

sum(HalfAddNand) := or(and(neg(inO(HalfAddNand)),

inl(HalfAddNand))
and(inO(HalfAddNand),

neg(inl(HalfAddNand)))).

output-eqn (half add,

carry(HalfAddNand) :=and(inO(HalfkddNand),
inl(HalfAddNand)))

--Adapted from Zycad VHDL File:

-- DATE: 23 May 1991

-- VERSION: 1

-- UNIX FILENAME: half-..adder.vhalf add

-- FUNCTION: This file is a structural description of a half-.adder.

-- AUTHOR: dwb (Capt David Banton)

library ZYCAD;

use ZYCAD.TYPES. all;

use ZYCAD.COMPONENTS. all;

-- THE ENTITY DECLARATION:

entity half-.adder is -- half adder

port(Input: In MVL7-Vector (1 to 2); -- input

Sum, -- sum

Carry: Out MVL7); -- carry
end half-.adder;

-- THE ARCHITECTURAL BODY:

architecture Structural of half-.adder is

A-71

signal Si, S2, S3, S4, S5: MVL7;

component invgate -- inverter
generic (tLH: Time; -- rise inertial delay

tHL: Time); -- fall inertial delay
port (Input: In MVL7; -- input

Output: Out MVL7); -- output
end component;

component nandgate -- N input NAND gate
generic (N: Positive; -- number of inputs

tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay

port (Input: In MVL7_Vector (1 to N); -- input
Output: Out MVL7); -- output

end component;

begin
Ul: invgate generic map (i ns, 1 ns)

port map (Input(i), Si);
U2: invgate generic map (1 ns, I ns)

port map (Input(2), S2);
U3: nandgate generic map (2, 2 ns, 2 ns)

port map (Input(I) => Input(1), Input(2) => S2,

Output => S3);
U4: nandgate generic map (2, 2 ns, 2 ns)

port map (Input(i) => Input(2), Input(2) => Si,

Output => S4);
U5: nandgate generic map (2, 2 ns, 2 ns)

port map (Input(l) => S3, Input (2) => S4,
Output => Sum);

U6: nandgate generic map (2, 2 ns, 2 ns)
port map (Input(I) => Input(I), Input(2) => Input(2),

Output => SS);
U7: invgate generic map (I ns, 1 ns)

port map (S5, Carry);

end Structural;

-- FUNCTION: This file contains the test bench for
-- half-adder.vhalfadd.
-- AUTHOR: dwb (Capt David Banton)

library ZYCAD;
use ZYCAD.TYPES.all;

A-72

use ZYCAD.COMPONENTS.all;

-- THE ENTITY DECLARATION:
entity half-addertest.bench is
end half.adder.test.bench;

-- THE ARCHITECTURAL BODY:
architecture test of half-adder-test.bench is

component half-adder

port(Input: In MVL7_Vector (1 to 2);
Sum,
Carry: Out MVL7);

end component;

signal Input: MVL7_Vector (I to 2);

signal Sum, Carry: MVL7;

signal stop.sim: boolean := FALSE;

begin
Problem: half-adder port map (Input, Sum, Carry);

Input <= "00", "01" after 50 ns,
"10" after 100 ns, "11" after 150 ns;

stop-sim <= TRUE after 200 ns;

STOP-CONTROL: process
begin
wait until stop.sim = TRUE;
assert false report "Simulation Done" severity failure;

end process STOP-CONTROL;
end test;

-- FUNCTION: This is the configuration specification file for
-- half-adder.vhalfadd.
-- AUTHOR: dwb (Capt David Banton)

-- THE CONFIGURATION DECLARATION:

configuration half.adder.system of half-adder-test-bench is
for test
end for;

end half.adder.system;

A-73

A.2.15 faddnor.pl

FADDNOR.PL

/* This file implements a simple full-adder that *

/* is built from inverters, half-adders, and
/* 2 input nor gates.

/* It is based upon a Zycad VHDL file written by *
/* Capt Dave Banton, which is attached below the *
/* Prolog code.

*load..in(primitive). %h get nor2
*load-in(inv). % get inverter
*load-.in(half add)o. % get half adder

/*---------------- FADDNOR -------------------------

*retractall(module-.name(-)). % Make sure that THIS is the top module
module~nane (faddnor).

port(faddnor,inOC..FullAdder),input,boole).- % bit 0 (low-order bit)
port(faddnor,inlC..FullAdder),input,boole). % bit 1 (high-order bit)
port (f addnor ,carryinC.FullAdder) ,input ,boole).
port (f addnor ,sumC.FullAdder) ,output ,boole).
port (f addnor ,carryout QFullAdder) ,output ,boole).

part (f addnor, inv-.0(-.FullAdder) ,inv).

part(faddnor,nor2-.OC..FullAdder) ,nor2).
part (faddnor ,hadder..OC.FullAdder) ,half add).

part (f addnor ,hadder-lC.FullAdder) ,half add).

connected(faddnor, in0(FullAdderNor) ,in0(hadder-..(FullAdderNor))).
connected(faddnor,inl (FullAdderNor) ,inl(hadder-..(FullAdderNor))).
connected(faddnor ,sum(hadder..0(FullAdderNor)) ,inO(hadderj (FullAdderNor))).
connected(faddnor,carry(hadder..O(FullAdderNor)) ,inl(nor2-S(FullAdderNor))).

connected(faddnor ,carryin(FullAdderNor) ,inl(hadder-l(FullAdderNor))).

connected(faddnor ,sum(hadder-.l(FullAdderNor)) ,sum(FullAdderNor)).
connected(faddnor ,carry (hadderj (FullAdderNor)) ,inO(nor2-.O'FullAdderNor)))*

connected(faddnor ,out (nor2..O(FullAdderNor)) ,in(inv-S(FullAdderNor)))*
connected(faddnor ,out (inv..O(FullAdderNor)) ,carryout (FullAdderNor)).

A- 74

/* Behavioral Specification for an full adder *

output-eqn(faddnor,sum(FullAdderNor):

or (
or(and(

and(inO(FullAdderNor),

nl (FullAdderNor)),

carryin(FullAdderNor)),

and (
and(inO(FullAdderNor),

neg(inl(FullAdderNor))),
neg(carryin(FullAdderNor))))

or(and(

and(neg(inO(FullAdderNor)),

nl (FullAdderNor)),

neg(carryin(FullAdderNor))),

and (
and(neg(inO(FullAdderNor)),

neg(inl(FullAdderNor))),
carryin(FullAdderNor)))))

output-eqn(faddnor ,carryout (FullAdderNor) : =
or(or(and(inO(FullAdderNor),

inl(FullAdderNor)),

and(inO(FullAdderNor),

carryin(FullAdderNor)))
and(inl(FullAdderNor),

carryin(FullAdderNor))))

--Adapted from Zycad VHDL File:

-- DATE: 23 May 1991
-- VERSION: 1

-- UNIX FILENAME: full-.adder.vhd
-- FUNCTION: This file is a structural description of a full-adder.
-- AUTHOR: dwb (Capt David W. Banton)

library ZYCAD;

use ZYCAD types.all;

use ZYCAD .COMPONENTS .all;

A-75

-- THE ENTITY DECLARATION:

entity full-adder is
port(Input: In MVL7_Vector (1 to 3); -- Inl, In2, CarryIn

Sum, CarryOut: Out MVL7);
end full-Adder;

-- THE ARCHITECTURAL BODY:

architecture Structural of full-adder is

signal PI,GI, Si, S2: MVL7;

component invgate -- inverter
generic (tLH: Time; -- rise inertial delay

tHL: Time); -- fall inertial delay
port (Input: In MVL7; -- input

Output: Out MVL7); -- output
end component;

component norgate -- N input NOR gate
generic (N: Positive; -- number of inputs

tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay

port (Input: In MVL7_Vector (1 to 2); -- input

Output: Out MVL7); -- output
end component;

component half-adder
port (Input: In MVL7_Vector (1 to 2); Sum, Carry: Out MVL7);

end component;

begin
UO : half-adder port map (Input(l) => Input(l), Input(2) => Input(2),

Sum => P1, Carry => GI);
U1 : half-adder port map (Input(l) => Pt, Input(2) => Input(3),

Sum => Sum, Carry => SO);
U2 : norgate generic map (2, 2 ns, 2 ns)

port map (Input(I) => S1, Input(2) => G1,
Output => S2);

U3 : invgate generic map (I ns, 1 ns)
port map (S2, CarryOut);

end Structural;

A-76

-- FUNCTION: testbench

-- AUTHOR: dwb

library ZYCAD;
use ZYCAD.types.all;
use ZYCAD.COMPONENTS.all;

-- THE ENTITY DECLARATION:

entity full-adder-test-bench is
end full-adder-test-bench;

-- THE ARCHITECTURAL BODY:

architecture test of full-adder-test-bench is

component full-adder
port(Input: In MVL7_Vector (1 to 3); -- Inl, In2, CarryIn

Sum, CarryOut: Out MVL7);

end component;

signal Input: MVL7_Vector (1 to 3);
signal Sum, CarryOut: MVL7;
signal stop-sim: boolean := FALSE;

begin
Problem: full-adder port map (Input, Sum, CarryOut);

Input <= "000", "001" after 50 ns,
"010" after 100 ns, "011" after 150 ns,

"100" after 200 ns, "101" after 250 ns,
"110" after 300 ns, "111" after 350 ns;

stop-sim <= TRUE after 500 ns;

STOP-CONTROL: process

begin
wait until stop-sim = TRUE;

assert false report "Simulation Done" severity failure;
end process STOP-CONTROL;
end test;

-- FUNCTION: configuration

-- AUTHOR:dbw

A-77

-- THE CONFIGURATION DECLARATION:

configuration full-add3r-system of full-adder-test-bench is

for test
end for;

end fullhadder.system;

A-78

A.2.16 fadd4-cl.pl

FADD4_CL.PL

/* This file implements a four bit full-adder with *
/* carry lookahead. This part is built with xors, *
/* inverters, half adders, and 2, 3, 4, and 5 input *
/* nand gates. *
/* It is based upon a Zycad VHDL file written by *
/* Capt Dave Banton, which is attached below the *
/* Prolog code. *

*loadjin(primitive). % get nand2
*load~in(half add). % get half adder
*load-.in(inv). % get inverter
*load-.in(xor). % get xor

*load-in(nand3). % get 3 input nand
*load-.in(nand4). % get 4 input nand
*load-in(nand5). % get 5 input nand

/*----------------4bit adder -------------------------

:- retractall(module..nameQ-)). %. Make sure that THIS is the top module
module..name(fadd4..cl).

port(fadd4_cl,inOOQ-FullAdder),input,boole). % nibble 0 bit 0 (low-order bit)
port(fadd4..cl,in0lC..FullAdder),input,boole). %. nibble 0 bit 1
port(fadd4..cl,inO2C.FullAdder),input,boole). % nibble 0 bit 2
port(fadd4_.cl,inO3C.FullAdder),input,boole). % nibble 0 bit 3 (high-order bit)

port(fadd4_.cl,in1OC.FullAdder),input,boole). % nibble 1 bit 0 (low-order bit)
port(fadd4_.cl,in~llCFullAdder),input,boole). % nibble 1 bit 1
port(fadd4-.cl,inl2(..FullAdder),input,boole). % nibble 1 bit 2

port(fadd4..cl,inl3(-.FullAdder),input,boole). % nibble 1 bit 3 (high-order bit)

port (fadd4-.cl ,carryin(_FullAdder) ,input ,boole).

port (fadd4..cl ,sum0C..FullAdder) ,output ,boole).

port(fadd4-cl ,sumlQ-FullAdder) ,output,boole).
port(fadd4..cl ,sum2C-FullAdder) ,output ,boole).
port(fadd4..cl ,sum3(-FullAdder) ,output,boole).

port(fadd4-cl ,carryout(_FullAdder) ,output ,boole).

A -79

/------------ parts list-------------------------

partCf add4..cl ,uOC.FullAdder) ,half add). % half adders
part(fadd4-.cl ,ulC.FullAdder) ,half add).

partCf add4-.cl ,u2C.FullAdder) ,half add).
part (fadd4-.cl ,u3C.FullAdder) ,half add).

part(fadd4_.cl,u4(..FullAdder),nand2). %sum and carry 0

part(fadd4_.cl,u5C..FullAdder) ,inv).

partCf add4..cl ,u6C..FullAdder) ,nand2).

part(fadd4_.cl,u7C.FullAdder),nand2). sum and carry 1

part (fadd4_.cl ,u8C.FullAdder) ,nand3).

part (fadd4_.cl ,u9 (-.FullAdder) ,inv).

part(fadd4_.cl ,ulOC.FullAdder) ,nand3).

part(fadd4..cl,ullC.FullAdder),nand2). % sum and carry 2
part(fadd4_.cl,ul2C..FullAdder) ,nand3).

part(fadd4_.cl ,ul3(-.FullAdder) ,nand4).

part (fadd4_.cl ,ul4C.FullAdder) ,inv).

partCf add4_.cl,ul5C..FullAdder) ,nand4).

part(fadd4_.cl,ul6C.FullAdder),nand2). Xsum and carry 3
part (fadd4_.cl ,ul7C.FullAdder) ,nand3).
part(fadd4..cl,ul8C-FullAdder) ,nand4).

part(fadd4_.cl,ul9C-FullAdder) ,nand5).

part(fadd4-.cl,u20C.YullAdder) ,inv).

part (fadd4-.cl,u2l(..FullAdder) ,nand5).

part(fadd4..cl,u22C-FullAdder),xor). %. generate sum bits

part (fadd4_.cl,u23 (-FullAdder) ,xor).

part (fadd4..cl ,u24 (-.FullAdder) ,xor).

part(iadd4-c1 ,u2SC..FullAdder) ,xor).

.,onnected(fadd4-.cl ,inOO(FullAdd4GL) ,in0(uO(FullAdd4CL))).

connected(fadd4-.cl,inlO(FullAdd4CL) ,inl(uO(FullAdd4CL))).

connected(fadd4-.cl,inOl(FullAdd4CL) ,in0(ul(FullAdd4CL))).

connected(fadd4-.cl,inll(FullAdd4CL) ,inl(ul(FullAdd4CL))).

connected(fadd4-.cl,inO2(FullAdd4CL) ,in0(u2(FullAdd4CL))).

connected(fadd4-.cl,inl2(FullAdd4CL) ,inl(u2(FullAdd4CL))).

connected(fadd4-.cl,inO3(FullAdd4CL) ,in0(u2(FullAdd4CL))).

connected(fadd4-.cl,inl3(FullAdd4CL) ,inl(u2(FullAdd4CL))).

connected(fadd4-.cl ,carryin(FullAdd4CL) ,in0(u4(FullAdd4CL))).

A-80

cotmected(fadd4-.cl,sum(uO(FullAdd4CL)) ,inl(u4(Fu11Add4CL))).

connected(fadd4-.cl,carry(uO(Fu11Add4CL)) ,in(u5(Ful1Add4CL))).

connected(fadd4_.cl,out(u5(Fu11Add4CL)) ,inl(u6(Fu11Add4CL))).

connected(fadd4-.cl,out(u4(Fu11Add4CL)) ,inO(u6(Fu11Add4CL))).

conmected(fadd4-c1 ,carryin(Fu11Add4CL) ,inO(u22(Fu11Add4CL))).

connected(fadd4..cl,sum(uO(FullAdd4CL)) ,inl(u22(Fu11Add4CL))).

connected(fadd4_.cl,sum(ul(FullAdd4CL)) ,inl(u7(Fu11Add4CL))).

connected(fadd4_.cl ,carry(uO(Fu11Add4CL)),inO(u7(FullAdd4CL))).

connected(fadd4-.cl,out(u6(Fu11Add4CL)) ,inO(u23(Fu11Add4CL))).

connected(fadd4..-cl,sum(ul(FullAdd4CL)) ,inl(u23(Fu11Add4CL))).

connected(fadd4_.cl,sum(ul(FullAdd4CL)) ,inO(u8(Fu11Add4CL))).

connected(fadd4-.cl ,carrvin(Ful1Add4CL) ,inl(u8(Fu11Add4CL))).

connected(fadd4-.cl,sum(uO(Fu11Add4CL)) ,in2(u8(FullAdd4CL))).

connected(fadd4-.cl,carry(ul(Fu11Add4CL)) ,in(u9(Fu11Add4CL))).

connected(fadd4_.cl,out(u7(Fu11Add4CL)) ,inO(ulO(Fu11Add4CL))).

connected(fadd4-.cl,out(u8(FullAdd4CL)) ,inl(ulO(Fu11Add4CL))).

connected(fadd4-.cl,out(u9(Fu1J.Add4CL)) ,in3(ulO(Fu11Add4CL))).

connected(fadd4-.cl,sum(u2(Fu11Add4CL)) ,inl(u24(Fu11Add4CL))).

connected(fadd4-.cl,out(ulO(Ful1Add4CL)) ,inO(u24(Ful1Add4CL))).

conniected(fadd4_.cl,carry(ul(FullAdd4CL)) ,inO(ull(Fu11Add4CL))).

connected(fadd4-.cl,sum(u2(Fu11Add4CL)) ,inl(ull(Ful1Add4CL))).

connected(fadd4_.cl,sum(u2(Fu11Add4CL)) ,inQ(ul2(Fu11Add4CL))).

connected(fadd4-c1,carry(uO(Fu11Add4CL)) ,inl(ul2(Fu11Add4CL))).

connected(fadd4_.cl,sum(ul(Fu11Add4CL)) ,in2(ul2(Fu11Add4CL))).

connected(fadd4_.cl,sum(u2(FullAdd4CL)) ,inO(ul3(Fu11Add4CL))).

connected(fadd4-.cl,sum(ul(FullAdd4CL)) ,jnl(ul3(Fu11Add4CL))).

connected(fadd4-.cl ,carryin(Ful1Add4CL) ,in2(u13(Fu11Add4CL))).

connected(fadd4-.cl,sum(uO(Fu11Add4CL)) ,in3(ul3(Fu11Add4CL))).

connected(fadd4-.cl,carry(u2(Fu11Add4CL)) ,in(u14(Fu11Add4CL))).

connected(fadd4-.cl,out(ull(FullAdd4CL)) ,inO(u15(Fu11Add4CL))).

connected(fadd4-cl,out(u12(Ful1Add4CL)) ,inl(ul5(Fu11Add4CL))).

connected(fadd4-.cl,out(u13(Fu11Add4CL)) ,in2(ul5(FullAdd4CL))).

connected(fadd4-.cl.,out(ul4(Ful1Add4CL)) ,in3(u15(FullAdd4CL))).

connected(fadd4_.cl,sum(u3(FullAdd4CL)) ,inl(u25(Fu11Add4CL))).

connected(fadd4-.cl,out(u15(FullAdd4CL)) ,inO(u25(Fu11Add4CL))).

corinected(fadd4-.cl,carry(u2(Fu11Add4CL)) ,inO(u16(Fu11Add4CL))).

connected(fadd4-.cl,sum(u3(Fu11Add4CL)) ,inl(ul6(Fu11Add4CL))).

connected(fadd4_cl,suni(u2(Fu11Add4CL)) ,inO(u17(Fu11Add4CL))).

connected(fadd4_.cl,sum(u3(Fu11Add4CL)) ,inl(u17(Ful1Add4CL))).

connected(fadd4_.cl,carry(ul(Fu11Add4CL)) ,in2(u17(FullAdd4CL))).

connected(fadd4_.c1 ,carry(uO(Fu11Add4CL)) ,inO(u18(Ful1Add4CL))).

connected(fadd4_cl ,sum(u3(Ful1Add4CL)) ,inl(u18(Fu11Add4CL))).

A-8i

connected(fadd4-.cl,sum(u2(FullAdd4CL)) ,in2(ul8(FullAdd4CL))).

connected(fadd4-.cl,sum(ul(FullAdd4CL)) ,in3(ul8(FullAdd4CL))).

connected(fadd4-.cl,sum(u3(FullAdd4CL)) ,inO(u19(FullAdd4CL))).

connected(fadd4-.cl,sum(u2(FullAdd4CL)) ,inl(u19(Fu11Add4CL))).

cormected(fadd4-.cl,sum(ul(FullAdd4CL)) ,in2(ul9(Ful1Add4CL))).

connected (fadd4-cl ,carryin(Ful1Add4CL) ,in3 (ul9 (FullAdd4CL))).

connected(fadd4_cl,suxn(uO(FullAdd4CL)) ,in4(ul9(FullAdd4CL))).

connected(fadd4..cl ,carry(u3(FullAdd4CL)) ,in(u20(FullAdd4CL))).
connected(fadd4_.cl,out(ul6(FullAdd4CL)) ,inO(u2l(FullAdd4CL))).
connected(fadd4_.cl,out(u17(FullAdd4CL)) ,inl(u21(FullAdd4CL))).

connected(fadd4_.cl,out(ul8(FullAdd4CL)) ,in2(u2l(Fu11Add4CL))).

connected(fadd4_.cl,out(ul9(Fu11Add4CL)) ,in3(u21(Fu11Add4CL))).

connected(fadd4_.cl,out(u20(FullAdd4CL)) ,in4(u2l(FullAdd4CL))).

connected(fadd4-.cl ,out (u21(FullAdd4CL)) ,carryout(FullAdd4CL)).

% u21 produced carryout

connected(fadd4-.cl ,out(u22(Ful1Add4CL)) ,sumO(FullAdd4CL)).

% u22 produces sumO
connected(fadd4_.cl ,out(u23(FullAdd4CL)) ,suml (FullAdd4CL)).

% u23 produces sumi
connected(fadd4-.cl ,out (u24(FullAdd4CL)) ,suni2(FullAdd4CL)).

% u24 produces sum2
connected(fadd4-.cl ,out(u25(FullAdd4CL)) ,sum3(FullAdd4CL)).

% u25 produces sum3

/* Behavioral Specification for an full adder *

output..eqn(fadd4-.cl,suinO(FA4CL)

or (
and(carryin(FA4CL),

or(and(inOO(FA4CL),in1O(FA4CL)),

and(neg(inOO(FA4CL)),neg(inlO(FA4CL))))),

and(neg(carryin(FA4CL)),

or(and(inOO(FA4CL),neg(inlO(FA4CL))),

and(neg(inOO(FA4CL)),inlO(FA4CL))))))

output-.eqn(fadd4-.cl ,sumi (FA4CL) :=
or(and(neg(or(and(in~l(FA4CL),neg(inll(FA4CL))),

and(neg(inOI(FA4CL)),inII(FA4CL))))
or(and(inOO(FA4CL),inlO(FA4CL)),

and(carryin(FA4CL),

or(and(inOO(FA4CL),neg(inIO(FA4CL))),

and(neg(inOO(FA4CL)),in1O(FA4CL)))))

A-82

and(or(and(inOI(FA4CL),neg(inll(FA4CL))),

and(neg(in~l(FA4CL)),inll(FA4CL)))
neg(or(and(inOO(FA4CL),inlO(FA4CL)),

and(carryin(FA4CL),
or(and(inOO(FA4CL),

neg(inlO(FA4CL))),
and(neg(inOO(FA4CL)),

inlO(FA4CL))))))))).

output...eqn(fadd4-.cl ,suzn2(FA4CL) :

or(and(neg(or(and(inO2(FA4CL),neg(inl2(FA4CL))),

and(neg(inO2(FA4CL)),inl2(FA4CL))),

or(and(in~l(FA4CL),inlI(FA4CL)),
and(or(in~l(FA4CL),inll(FA4CL)),

or(or(and(carryin(FA4CL),inOO(FA4CL)),

and(carryin(FA4CL) ,inlO(FA4CL))),
and(inOO(FA4CL) ,inlO(FA4CL)))))),

and(or(and(inO2(FA4CL),neg(inl2(FA4CL))),

and(neg(inO2(FA4CL)),inl2(FA4CL)))
neg(or(and(inOl(FA4CL) ,inll(FA4CL)),

and(or(in~l(FA4CL),inll(FA4CL)),

or(or(and(carryin(FA4CL) ,inOO(FA4CL)),

and(carryin(FA4CL) ,inIO(FA4CL))),
and(inOO(FA4CL) ,inlO(FA4CL))))))))

output...eqn(fadd4-.cl ,sum3(FA4CL) :
or(and(neg(or(and(inO3(FA4CL),neg(inl3(FA4CL))),

and(neg(inO3(FA4CL)) ,inl3(FA4CL))))
or(and(inO2(FA4CL) ,inl2(FA4CL)),

and(orC inO2(FA4CL),inl2(FA4CL)),

or(or(anid(or(and(carryin(FA4CL),

ar(and(inOOCFA4CL),

negC inlO(FA4CL))),

and(negC inOO(FA4CL)),

inIO(FA4CL)))),
and(inOOCFA4CL) ,inlO(FA4CL))),

inll(FA4CL),

and(inOl(FA4CL) ,inll(FA4CL))),

and(orC anid(carryin(FA4CL),

or(and(inOO(FA4CL),

neg(inlQCFA4CL))),

and(neg(inOO(FA4CL)),

inlOMF)),

and(inOO(FA4CL) ,inlO(FA4CL))),

inOl(FA4CL)))))),

A-83

and(or(and(inO3(FA4CL),neg(inl3(FA4CL))),

and(neg(inO3(FA4CL)),inl3(FA4CL)))
neg(or(and(inO2(FA4CL),inl2(FA4CL)),

and(or(inO2(FA4CL),inl2(FA4CL)),

or(or(and(or(and(carryin(FA4CL),
or(and(inOO(FA4CL),

rieg(i~nlO(FA4CL))),
and(neg(inOO(FA4CL)),

inlO(F)))),

and(inOO(FA4CL) ,inlO(FA4CL))),

inll(FA4CL)),

and(in~l(FA4CL) ,inll(FA4CL))),

and(or(and(carryin(FA4CL),

or(and(inOO(FA4CL),

neg(inlO(FA4CL))),
and(neg(inOO(FA4CL)),

inIO(F)))),

and(inOO(FA4CL) ,inlO(FA4CL))),

in~l(FA4CL))))))))

output-eqn(fadd4-c1 ,carryout(FA4CL) :

or(and(inO3(FA4CL),inl3(FA4CL)),

and(or(inO3(FA4CL),inl3(FA4CL)),

or(or(and(or(and(in~l(FA4CL),inll(FA4CL)),
and(or(in~l(FA4CL),inll(FA4CL)),

or(or(and(carryin(FA4CL),

inOO(FA4CL)),

and(carryin(FA4CL),

inIO(FA4CL))),
and(inOO(FA4CL) ,inlO(FA4CL))))),

inO2(FA4CL)),

and(or(anid(inOl(FA4CL),inll(FA4CL)),

and(or(in~l(FA4CL),inll(FA4CL)),
or(or(and(carryin(FA4CL),

inOO(FA4CL)),

and(carryin(FA4CL),

iniO(FA4CL))),
and(inOO(FA4CL),

inIO(FA4CL))))),

inl2(FA4CL)),

and(inO2(FA4CL) ,in22(FA4CL))))))).

A- 84

--- Adapted from Zycad VRDL File:

-- DATE: 17 April 1991
-- VERSION: 1
-- UNIX FILENAME: fourbit _cl_.adder- entity.vhd
-- FUNCTION: This file cntains the entity and structural

-- architecture for a foar bit carry look ahead adder.
-- AUTHOR: dwb (Capt David W Banton)

library ZYCAD;
use ZYCAD.types.all;
use ZYCAD.COMPONENTS.all;

-- THE ENTITY DECLARATIGN:

entity four.bit-cl-adder is -- 4b carry look-ahead adder

port(InputO, -- 4 bit word input 0

Inputl: In MVL7_Vector (3 downto 0); -- 4 bit word input 1

CarryIn: In MVL7; -- carry input

Sum: Out MVL7_Vector (3 downto 0); -- 4 bit word output

CarryOut: Out MVLT); -- carry output
end four.bit.cl-adder;

-- THE ARCHITECTURAL BODY:

architecture Structural of four-bit-cl-adder is

signal PO, P1, P2, P3, GD, G1, G2, G3, GOnot, GInot, G2not, G3not,

SO, S1, S2, S3, S4, S5, S6, S7, S8, S9, CO, C1, C2: MVL7;

component invgate -- inverter

generic (tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay

port (Input: In MVL7; -- input

Output: Out MVLT); -- output
end component;

component nandgate -- N input NAND gate

generic (N: Positive; -- number of inputs
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay

port (Input: In MVLTVector (I to N); -- input

Output: Out MVLT); -- output

A-85

end component;

component xorgate

generic (N: Positive; -- number of inputs
tLH: Time; -- rise inertial delay

tHL: Time); -- fall inertial delay
port (Input: In MVL7_Vector (1 to N); -- input

Output: Out MVL7); -- output

end component;

component half-adder -- half-adder
port (Input: In MVL7_Vector (I to 2); -- input

Sum, -- sum
Carry: Out MVL7); -- carry

end component;

begin
-- Half-adders:

UO : half-adder port map (Input(1) => InputO(O), Input(2) => Inputl(O),

Sum => PO, Carry => GO);
Ui : half-adder port map (Thput(l) => InputO(1), Input(2) => Inputil(),

Sum => P1, Carry => GI);
U2 : half-adder port map (Input(l) => InputO(2), Input(2) => inputl(2),

Sum => P2, Carry => G2);
U3 : half-adder port map (Input(1) => InputO(3), Input(2) => Inputl(3),

Sum => P3, Carry => G3);
-- Sum and Carry 0:
U4 : nandgate generic map (2, 2 ns, 2 ns)

port map (Input(l) => CarryIn, Input(2) => PO,
Output => SO);

U5 invgate generic map (1 ns, I ns)
port map (GO, GOnot);

U6 : nandgate generic map (2, 2 ns, 2 ns)
port map (Input(1) => GOnot, Input(2) => SO,

Output => CO);
-- Sum and Carry 1:
U7 : nandgate generic map (2, 2 ns, 2 ns)

port map (Input(1) => GO, Input(2) => P1,

Output => S1);

U8 : nandgate generic map (3, 3 ns, 3 ns)

port map (Input(1) => CarryIn, Input(2) => PO,
Input(3) => P1, Output => S2);

U9 : invgate generic map (1 ns, 1 ns)
port map (GI, Glnot);

U1O nandgate generic map (3, 3 ns, 3 ns)

A-86

port map (Input(l) => Glnot, Input(2) => Si,

Input(3) => S2, Output => Ci);
-- Sum and Carry 2:

Uli nandgate generic map (2, 2 ns, 2 ns)
port map (Input(l) => Gi, Input(2) => P2,

Output => S3);
UI2 nandgate generic map (3, 3 ns, 3 ns)

port map (Input(I) => GO, Input(2) => P1,

Input(3) => P2, Output => $4);
U13 : nandgate generic map (4, 4 ns, 4 ns)

port map (Input(i) => CarryIn, Input(2) => PO,

Input(3) => P1, Input(4) => P2,

Output => S5);
Ui4 : invgate generic map (1 ns, 1 ns)

port map (G2, G2not);

U15 : nandgate generic map (4, 4 ns, 4 ns)
port map (Input(I) => G2not, Input(2) => S3,

Input(3) => S4, Input(4) => S5,
Output => C2);

-- Sum and Carry 3:
U16 : nandgate generic map (2, 2 ns, 2 ns)

port map (Input(l) => G2, Input(2) => P3,

Output => S6);
U17 : nandgate generic map (3, 3 ns, 3 ns)

port map (Input(1) => GZ, Input(2) => P2,

Input(3) => P3, Output => S7);
U18 : nandgate generic map (4, 4 ns, 4 ns)

port map (Input(i) => GO, Input(2) => P1

Input(3) => P2, Input(4) => P3,
Output => S8);

Ui9 : nandgate generic map (5, 5 ns, 5 ns)
port map (Input(i) => Carryln, Input(2) => PO,

Input(3) => Pl, Input(4) => P2,
Input(5) => P3, Output => S9);

U20 : invgate generic map (1 ns, 1 ns)
port map (G3, G3not);

U21 : nandgate generic map (5, 5 ns, 5 ns)
port map (Input(l) => G3not, Input(2) => S6,

Input(3) => S7, Input(4) => S8,

Input(5) => S9, Output => CarryOut);

U22 xorgate generic map (2, 2 ns, 2 ns)
port map (Input(1) => PO, Input(2) => Carryln,

Output => Sum(O));
U23 : xorgate generic map (2, 2 ns, 2 ns)

A-87

port map (Input(1) => P1, Input(2) => CO,
Output => Sum(1));

U24 xorgate generic map (2, 2 ns, 2 ns)

port map (Input(1) => P2, Input(2) => Cl,
Output => Sum(2));

U25 xorgate generic map (2, 2 ns, 2 ns)
port map (Input(1) => P3, Input(2) => C2,

Output => Sum(3));
end Structural;

A-88

Appendix B. Sample Program Runs

B. I Sample Verification Run Using Sparks's AFITVERIFY

B.1.1 Verification of One-Bit Full Adder faddxor.pl

Script started on Fri Aug 2 14:30:47 1991
csh> prolog

Quintus Prolog Release 2.4 (VAX, Ultrix 2.0-2.2)
Copyright (C) 1988, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415) 965-7700

1 ?- ['qfaddld.pro'].
[consulting /usr/users/ela/labovitz/newverify/qfaddld.pro...]
[consulting /usr/users/ela/labovitz/newverify/qops.pro...]

[Undefined procedures will just fail ('fail' option)]
[qops.pro consulted 0.267 sec 1,092 bytes]
[consulting /usr/users/ela/labovitz/newverify/eval.pro...]

[WARNING: Singleton variables, clause 3 of evaluate-brown/2: F]
[eval.pro consulted 0.700 sec 2,936 bytes]
[consulting /usr/users/ela/labovitz/newverify/derbeh.pro...]

[WARNING: Singleton variables, clause I of derive-behaviors/3: Spec-Behavior]
[WARNING: Singleton variables, clause 2 of derive-behaviors/3: Spec-Behavior]
[WARNING: Clauses for derive.behavior/3 are not together in the source file]
[WARNING: Singleton variables, clause I of derive-behavior/3: F]
[WARNING: Singleton variables, clause 2 of derive-behavior/3: F]
[WARNING: Singleton variables, clause 8 of derive-behavior/3: Module]
[derbeh.pro consulted 0.984 sec 3,220 bytes]
[consulting /usr/users/ela/labovitz/newverify/derstate.pro...]

[WARNING: Singleton variables, clause I of derive-states/3S Type, Part]
[WARNING: Singleton variables, clause I of replace-all/5: Part]
[WARNING: Singleton variables, clause 2 of replace-all/5: Module, Old, New]
[WARNING: Singleton variables, clause I of replace/4: Old, New]
[WARNING: Singleton variables, clause 2 of replace/4: Old, New]
[WARNING: Singleton variables, clause 3 of replace/4: New, Argl]
[WARNING: Singleton variables, clause 11 of replace/4: Old, New]
[derstate.pro consulted 0.966 sec 2,904 bytes]
[consulting /usr/users/ela/labovitz/newverify/xor.pro...]

[WARNING: Singleton variables, clause 1 of port/4: ANand2]
[WARNING: Singleton variables, clause 2 of port/4: ANand2]
[WARNING: Singleton variables, clause 3 of port/4: ANand2]
[WARNING: Clauses for module-name/1 are not together in the source file]
[WARNING: Clauses for port/4 are not together in the source file]
[WARNING: Singleton variables, clause 1 of port/4: AnXor]

B-I

[WARNING: Singleton variables, clause 2 of port/4: AnXor]
[WARNING: Singleton variables, clause 3 of port/4: AnXor]
[WARNING: Singleton variables, clause 1 of part/3: AnXor]
[WARNING: Singleton variables, clause 2 of part/3: AnXor]
[WARNING: Singleton variables, clause 3 of part/3: AnXor]
[WARNING: Singleton variables, clause 4 of part/3: AnXor]
[WARNING: Clauses for output-eqn/2 are not together in the source file]
[xor.pro consulted 0.816 sec 2,616 bytes]
[consulting /usr/users/ela/labovitz/newverify/faddxcr.pro...]

[WARNING: Singleton variables, clause 1 of port/4: Afaddxor]
[WARNING: Singleton variables, clause 2 of port/4: Afaddxor]
[WARNING: Singleton variables, clause 3 of port/4: Afaddxor]
[WARNING: Singleton variables, clause 4 of port/4: Afaddxor]
[WARNING: Singleton variables, clause 5 of port/4: Afaddxor]
[WARNING: Singleton variables, clause 1 of part/3: Afaddxor]
[WARNING: Singleton variables, clause 2 of part/3: Afaddxor]
[WARNING: Singleton variables, clause 3 of part/3: Afaddxor]
[WARNING: Singleton variables, clause 4 of part/3: Afaddxor]
[WARNING: Singleton variables, clause 5 of part/3: Afaddxor]
[faddxor.pro consulted 0.766 sec 2,368 bytes]
[consulting /usr/users/ela/labovitz/newverify/boole2.pro...]

[WARNING: Singleton variables, clause I of remove-x-i/3: X1
[WARNING: Singleton variables, clause 2 of remove-x-1/3: X3
[WARNING: Singleton variables, clause 3 of remove-x_1/3: Arg2]
[WARNING: Singleton variables, clause 4 of remove_x_1/3: Arg, Argl, Arg2]
[WARNING: Singleton variables, clause 5 of remove.xI/3: Arg2]
[WARNING: Singleton variables, clause 6 of remove-x_1/3: Arg2]
[WARNING: Singleton variables, clause 1 of remove_x_0/3: X]
[WARNING: Singleton variables, clause 2 of remove_x_0/3: X]
[WARNING: Singleton variables, clause 3 of remove-x_0/3: Arg2]
[WARNING: Singleton variables, clause 4 of remove-x_0/3: Arg2]
[WARNING: Singleton variables, clause S of remove-x_0/3: Arg2]
[WARNING: Singleton variables, clause 6 of remove-xO0/3: Arg2]
[boole2.pro consulted 1.750 sec 6,900 bytes]
[consulting /usr/users/ela/labovitz/newverify/eqbeh.pro...]

[WARNING: Singleton variables, clause I of eqb/3: M]
[WARNING: Singleton variables, clause 2 of eqb/3: M]
[WARNING: Clauses for eqb/3 are not together in the source file]
[eqbeh.pro consulted 0.400 sec 1,236 bytes]
[consulting /usr/users/ela/labovitz/newverify/verify.pro...]
[verify.pro consulted 0.800 sec 3,180 bytes]

[qfaddld.pro consulted 8.117 sec 27,260 bytes]

yes
?- verify(faddxor).

B-2

>>> Attempting to verify faddxor»>>

»>>nand2 piimitive (needs no verification)»>>

»>>nand2 previously verified »>>

»>>nand2 previously verified »>>

>>> Attempting to verify xor»>>

»>>nand2 previously verified »>>

»>>nand2 previously verified »>>

»>>nand2 previously verified »>>

»>>nand2 previously verified »>>

component list is [nand2]

Applying Rule 1B to out(-1068)

Applying Rule 2A to out(g4C.1068))

nand2's output equation:

out(g4(A068)) := or(neg(ino(g4(-1068))),neg(inl(g4C.1068))))

Applying Rule 5 to or(neg(ino(g4C.1068))),neg(inl(g4(-1068))))

Applying Rule 3 to neg(inO(g4(-1068)))

Applying Rule 1B to inO(g4(-1068))

Applying Rule 2A to out(g2(-1068))

nand2's output equation:

out(g2C.1068)) := or(neg(ino(g2(-1068))),neg(inl(g2C-1068))))

Applying Rule 5 to or(neg(inO(g2(-1068))),neg(inl(g2(-1068))))

Applying Rule 3 to neg(inO(g2(-1068)))

Applying Rule 1A to inO(g2(-1068))

Value of neg(inO(-1068)):

neg(inOC..l068))

Applying Rule 3 to neg(inl(g2(-1068)))

Applying Rule lB to inl(g2(-1068))

Applying Rule 2A to out(gl(-1068))

nand2's output equation:

out(glC..l068)) := or(neg(ino(gl(-lO68))) ,neg(inl(glC-l068))))

Applying Rule 5 to or(neg(ino(glCAO068))),neg(inl(gl(-1068))))

Applying Rule 3 to neg(inO(gl(-1068)))

Applying Rule 1A to inO(gl(-1068))

Value of neg(inO(-.1068)):

neg(inO(-1068))
Applying Rule 3 to neg(inl(glC..l068)))

Applying Rule 1A to inl(gl(-1068))

Value of neg(inlC.1068)):

neg(inlC..1068))
Value of or(neg(inO(-1068)),neg(inlC-l068))):

or(neg(inO(-1068)) ,neg(inl(-1068)))

Value of neg(or(neg(inOC.1068)) ,neg(inl(-lO68)))):

and(inOC..1068) ,inl(-1068))

Value of or(rxeg(inO(-1068)),and(inO(-1068),inlC-l068))):

or(neg(inO(-1068)) ,and(inO(-.l068) ,inl(-1068)))

1~- 3

Value of neg(or(neg(in0(JO068)),afld(inl0Q1068),ifl1(-1068)))):

and(in0C.1068),or(neg(in0(-1O68)),fleg(inl(_1068))))

Applying Rule 3 to neg(inl(g4Q-1O68)))

Applying Rule 1B to inl(g4(-1068))

Applying Rule 2A to out(g3(-1068))

nand2's output equation:

out(g3(-1068)) := or(neg(ino(g3(-1068))),neg(inl(g3(-1068))))

Applying Rule 5 to or(neg(ino(g3Q-1068))),neg(inl(g3(-106
8))))

Applying Rule 3 to neg(inO(g3(-1068)))

Applying Rule 1B to inO(g3(-1068))

Applying Rule 2A to out(gl(-1068))

nand2's output equation:

out(gl(-.1068)) := or(neg(ino(gl(-106 8))) ,neg(inl(glC..1068))))

Applying Rule 5 to or(neg(inO(gl(..1068))),neg(inl(gl(-1O6
8))))

Applying Rule 3 to neg(inO(gl(-10 68)))

Applying Rule 1A to inO(gl(-1068))

Value of neg(inO(-1068)):

neg(inO(-1068))

Applying Rule 3 to neg(inl(glC.1068)))

Applying Rule 1A to inl(gl(-1068))

Value of neg(inl(-1068)):

neg(inl (1068))

Value of or(neg(inO(-1068)),neg(inl(-1068))):

or(neg(inO(-1068)) ,neg(inl(_1068)))

Value of neg(or(neg(inOC..1068)),neg(inlC..1068)))):

and(in0(-1068) ,inlCAO068))

Applying Rule 3 to neg(inl(g3C-1068)))

Applying Rule 1A to inl(g3Q-1068))

Value of neg(inl(-1068)):

neg(inl C..1068))
Value of or(and(inOC.1068),inl(-1068)),neg(inl(-1068))):

or(and(in0(-.1068) ,inl(-.1068)) ,neg(inlC.1068)))

Value of niGz(or(and(in0(-1068),inlC-1068)),neg(inl(_1068)))):
and(or(neg(ino0Ql068)),neg(inl(-1.068))),inl(-1068))

Value of or(and(inO(-1068),or(neg(in0CA1068)),neg(inl(-l068))),

and(or(neg(inoC.1068)) ,neg(inlC.1068))),

inl(-1068))):

or(and(in0(-1068) ,or(neg(ino(-1068)) ,neg(inl(-lC68)))),

and(or(neg(ino(-1068)) ,neg(inl(-1068))) ,inl(-1068)))

Does or(rind(inOCJO068) ,or(neg(in0(-1068)) ,neg(inl(-1068)))),

and(or(neg'kinoC.1068)),neg(inl(-1068))),inl(_1068)))-

or(and(neg(in0(-1068)),inl((J068)),afld(in0(-l068),
neg(inl(...1068))))

or(and(in0(-1068) ,or(neg(inOC.1068)) ,neg(inl(-1068)))),

and(or(neg(inOC..1O 68)) ,neg(inl(-.1068))) ,inl(-lO68)))

B-I

or(and(neg(inOC..1068)),inlCAO068)),and(inOCAO068),neg(inlC..1068))))

By Boolean Expansion

output list is [out(-1087)]

derived list is[outC..1159)]

Outnum isi

Derived number isi

<<< Success! Behavior of xor meets its specification.

»>>xor previously verified »>>

component list is Enand2]

Applying Rule 1B to outcarryQ-8O4)

Applying Rule 2A to out(g3C..804))

nand2's output equation:

out(g3C.804)) := or(neg(ir.o(g3C.804))),neg(inl(g3C..804))))

Applying Rule 5 to or(neg(ino(g3C.804))) ,neg(inl(g3Q-8O4))))

Applying Rule 3 to neg(inO(g3(-804)))

Applying Rule 1B to inO(g3C..804))

Applying Rule 2A to out(gl(-804))

nand2's output equation:

out(glC-8O4)) := or(neg(ino(glC-8O4))),neg(inl(glC-8O4))))

Applying Rule 5 to or(neg(ino(glC..804))) ,neg(inl(glC..804))))

Applying Rule 3 to neg(inO(glC..804)))

Applying Rule 1A to inO(glQ-8O4))

Value of neg(xC-8O4)):

neg(xC-8O4))

Applying Rule 3 to neg(inl(glC-8O4)))

Applying Rule IA to inl(glQ-8O4))

Value of neg(yC..804)):

neg(yQ-804))

Value of or(neg(xC.804)) ,neg(yC-8O4))):

or(neg(x(-.804)) ,neg(y(..804)))

Value of neg(or(neg(xC.804)) ,neg(yQ-8O4)))):

and(xC..804) ,yC..8O4))
Applying Rule 3 to neg(inl(g3C.804)))

Applying Rule lB to inl(g3Q-8O4))

Applying Rule 2A to out(g2C.804))

nand2's output equation:

out(g2C.804)) := or(neg(ino(g2C..804))) ,neg(inl(g2C.804))))

Applying Rule 5 to or(neg(ino(g2Q-8O4))) ,neg(inl~g2C-8O4))))

Applying Rule 3 to neg(inO(g2C.804)))

Applying Rule 1A to inO(g2C-8O4))

Value of neg(cinC.804)):

neg(cin(_8O4))

Applying Rule 3 to neg(inl(g2Q-8O4)))

Applying Rule lB to inl(g2C.804))

Applying Rule 2B to out(g4L-8O4))

xor's derived behavior:

out(g4Q-8O4)) := or(and(inO(g4Q-8O4)),or(neg(inO(g4C.804))).
neg(inl(g4C..804))))) ,and(or(neg(inO(g4C.804))),

neg(inl(g4Q-8O4)))) ,inl(g4C..804))))

Applying Rule 5 to or(and(inO(g4C.804)) ,or(neg(ino(g4C..804))),

neg(inl(g4Q-8O4))))) ,and(or(neg(inO(g4C.804))),

neg(inl(g4Q-8O4)))) ,inl(g4C-8O4))))

Applying Rule 4 to and(inO(g4C.804)) ,or(neg(inO(g4(..804))),
neg(inl(g4C.804)))))

Applying Rule IA to inO(g4C..804))

Applying Rule 5 to or(neg(ino(g4C.804))) ,neg(inl(g4C.804))))

Applying Rule 3 to neg(inO(g4C..804)))

Applying Rule IA to inO(g4Q-8O4))

Value of neg(xC.804)):

neg(xC.804))

Applying Rule 3 to neg(inl(g4C..804)))

Applying Rule IA to inlg4C.804))

Value of neg(y(..804)):

neg(yC..804))

Value of or(neg(xQ-8O4)) ,neg(yC.804))):
or(neg(xC..804)) ,neg(yC..804)))

Value of and(xC.804),or(neg(xC..804)),neg(yC..804)))):

and(xC.804) ,or(neg(xQ-8O4)) ,neg(yC..804))))

Applying Rule 4 to and(or(neg(ino(g4C..804))) ,neg(inl(g4Q-8O4)))),
nl (g4Q-8O4)))

Applying Rule 5 to or(neg(ino(g4C-8O4))),neg(inl(g4Q-8O4))))

Applying Rule 3 to neg(inO(g4C-8O4)))

Applying Rule 1A to inO(g4Q-8O4))
Value of neg(xC-8O4)):

neg(xC..804))

Applying Rule 3 to neg(inl(g4C..804)))

Applying Rule 1A to inl(g4C-8O4))

Value of neg(yC-8O4)):
neg(yC.804))

Value of or(neg(xC-8O4)) ,neg(yL-8O4))):
or(neg(xC..804)) ,neg(yL-8O4)))

Applying Rule 1A to inl(g4Q-8O4))

Value of and(or(neg(xC-8O4)),neg(yC.804))),yC..804)):

and(or(neg(xC.804)) ,neg(yC-8O4))) ,yC..804))

Value of or(and(xC..804),or(neg(xC.804)),neg(yC..804)))),and(or(neg(xC..804)),

neg(yC.804))) ,yC.804))):

or(and(x(-804) ,or(neg(xC..804)) ,neg(yQ-8O4)))) ,and(or(neg(xQ-8O4)),

neg(yC..804))) ,y(..804)))

Value of neg(or(and(xC.804),or(neg(xC.804)),neg(yC..804)))),
and(or(neg(xC.804)) ,neg(yQ-8O4))) ,yC..804)))):

B3-6

and(or(neg(xC..804)) ,and(xC..804) ,yC..8O4))) ,or(and(xC.804),
yC.8O4)) ,neg(yC.804))))

Value of or(neg(cinC.804)) ,and(or(neg(xC..804)) ,and(xC.804) ,yC.8O4))),

or(and(xC..804) ,yC.804)) ,neg(yC..804))))):
or(neg(cinC..804)) ,and(or(neg(xC.804)) ,and(xC.804) ,yL-8O4))),

or(and(xC..804) ,yC.8O4)) ,neg(yC.804)))))
Value of neg(or(neg(cinC..804)) ,and(or(neg(xC.804)) ,and(xC..804),yC..804))),

or(and(xC..804) ,yQ-8O4)) ,neg(yC-8O4)))))):

and(cinQ-8O4) ,or(and(xC.804) ,or(neg(xC.804)) ,neg(yC.804)))),
and(or(neg(x(-.804)) ,neg(yC..804))) ,y(-8O4))))

Value of or(and(xC.804) ,yQ-8O4)) ,and(cinC.804) ,or(and(xQ-8O4),

or(neg(xC.804)) ,neg(yC.804)))) ,and(or(neg(xC..804)),

neg(yC..804))) ,yQ-8O4))))):
or(and(xC.804) ,yC.8O4)) ,and(cinC..804) ,or(and(xC.804),

or(neg(xC..804)) ,neg(yC.804)))) ,and(or(neg(xC.804)),
neg(yC.804))) ,yC.804)))))

Does or(and(x(_8O4) ,yC.8O4)) ,and(cint..804) ,or(and(xC..804),

or(neg(xQ-8O4)) ,neg(y(..804)))) ,and(or(neg(xC.804)),

neg(yC..804))),yC..804)))))

or(and(xC.804) ,yC..8O4)) ,and(cinC.804) ,xor(xC.804) ,yC.8O4))))
or(and(xC.804) ,yC.8O4)) ,and(cinQ-8O4) ,or(and(xQ-8O4),

or(neg(xC.804)) ,neg(yC-8O4)))) ,and(or(neg(xC..804)),

neg(yC.804))),yC..804)))))

or(and(xC.804) ,yC.8O4)) ,and(cint..804) ,xor(xC..804) ,yC..8O4))))

By Boolean Expansion

Applying Rule 1B to outsumC-8Q4)

Applying Rule 2B to out(gSC..804))

xor's derived behavior:

out(g5C-8O4)) := or(and(inO(g5C.804)),or(neg(inO(gSC.804))),

neg(inl(g5C.804))))) ,and(or(neg(inO(gSC..804))),

neg(inl(g5C..804)))) ,inl(g5C.804))))

Applying Rule 5 to or(and(inO(g5C.804)) ,or(neg(ino(g5C.804))),
neg(inl(g5C..804))))),and(or(neg(irxO(g5C.804))),

neg(inl(g5C.804)))) ,inl(g5C..804))))

Applying Rule 4 to and(inO(g5C.804)) ,or(neg(ino(g5C..804))),

neg(inl(g5C.804)))))

Applying Rule lB to inO(gSC..804))

Applying Rule 2B to out(g4C.804))

xor's derived behavior:

out(g4C-8O4)) := or(and(inO(g4C..804)),or(neg(inO(g4C.804))),

neg(inl(g4C..804))))) ,and(or(neg(inO(g4C.804))),

Applying Rule 5 to or(and(inO(g4(_8O4)) ,or(neg(ino(g4C.804))),
neg(inl(g4(-.804))))) ,and(or(neg(inO(g4C.8O4))),

neg(inl(g4C..804)))) ,inl(g4C..804))))

B- 7

Applying Rule 4 to and(inO(g4C..804)),or(neg(ino(g4(..804))),

neg(inl(g4C.804)))))

Applying Rule 1A to inO(g4C..804))

Ar 'ying Rule 5 to or(neg(inO(g4C.804))),neg(inl(g4C.804))))

Applying Rule 3 to neg(inO(g4C..804)))

Applying Rule 1A to inO(g4C.804))

Value of neg(x(_8O4)):

neg(xC..804))
Applying Rule 3 to neg(inl(g4C..804)))

Applying Rule 1A to inl(g4C.804))

Value of neg(y(_8O4)):

neg(yC.804))
Value of or(neg(xC.804)) ,neg(yC.804))):

or(neg(xC.804)) ,neg(yC..804)))
Value of and(x(_804) ,or(neg(xC..804)) ,neg(yQ-8O4)))):

and(xC.804),or(neg(xC-8O4)),neg(yC.804))))

Applying Rule 4 to and(or(neg(ino(g4C.804))) ,neg(inl(g4Q-8O4)))),

inl(g4C.804)))
Applying Rule 5 to or(neg(ino(g4C.804))) ,neg(inl(g4C.804))))

Applying Rule 3 to neg(inO(g4C.804)))

Applying Rule 1A to inO(g4Q-8O4))

Value of neg(x(_804)):

neg(xC..804))

Applying Rule 3 to neg(inl(g4C..804)))

Applying Rule 1A to inl(g4C.804))

Value of neg(y(_804)):

neg(yC.804))

Value of or(neg(xC-8O4)) ,neg(yC.804))):

or(neg(xC.804)) ,neg(yC.804)))
Applying Rule 1A to inl(g4C..804))

Value of and(or(neg(xC.804)) ,neg(yC.804))) ,yC.804)):

and(or(neg(x(-.804)) ,neg(yC-8O4))) ,yC.804))

Value of or(and(xC.804) ,or(neg(xC-8O4)) ,neg(yC.804)))),

and(or(neg(xC.804)) ,neg(yC..804))) ,yC.-8O4))):

or(and(xC.804) ,or(neg(xC..804)) ,neg(yC..804)))),
and(or(neg(xC..804)) ,neg(yC..804))) ,yC.804)))

Applying Rule 5 to or(neg(ino(g5C.804))) ,neg(inl(g5C..804))))

Applying Rule 3 to neg(inO(gSC..804)))

Applying Rule 1B to inO(gSC..804))

Applying Rule 2B to out(g4C..804))

xor's derived behavior:

out(g4C.804)) : or(and(inO(g4C.804)),or(neg(inO(g4C..804))),

neg(inl(g4C.804))))),and(or(neg(inO(g4C..804))),

neg(inl(g4C..804)))) ,inl(g4C.804))))
Applying Rule 5 to or(and(inO(g4C.804)) ,or(neg(ino(g4C-8O4))),

B3-8

neg(inl(g4Q-8O4))))) ,and(or(neg(inO(g4C.804))),

neg(inl(g4C.804)))) ,inl(g4C-8O4))))
Applying Rule 4 to and(inO(g4C.804)) ,or(neg(ino(g4Q-8O4))),

neg(inl(g4C.804)))))
Applying Rule 1A to inO(g4C..804))

Applying Rule 5 to or(neg(inO(g4C..804))) ,neg(inl(g4C.804))))
Applying Rule 3 to neg(inO(g4C.804)))

Applying Rule IA to inO(g4C.804))

Value of neg(xC.804)):

neg(xC..804))

Applying Rule 3 to neg(inl(g4C.804)))

Applying Rule 1A to inl(g4C..804))

Value of neg(yC..804)):

neg(yC.804))

Value of or(neg(xC-8O4)) ,neg(yC.804))):

or(neg(xC..804)) ,neg(yQ-8O4)))

Value of and(xC.804) ,or(neg(xC.804)) ,neg(y(..804)))):

and(xC..804) ,or(neg(xQ-8O4)) ,neg(yC.804))))

Applying Rule 4 to and(or(-eg(ino(g4C..804))) ,neg(inl(g4C.804)))),

nl (g4C..804)))

Applying Rule 5 to or(neg(inO(g4C-8O4))),neg(inl(g4C.804))))

Applying Rule 3 to neg(inO(g4C.804)))
Applyixn, Rule 1A to inO(g4C.804))

Value of neg(x(.804)):

neg(xC..804))
Applying Rule 3 to neg(inl(g4C.804)))

Applying Rule 1A to inl(g4C-8O4))

Value of neg(yC..804)):

neg(yC.804))
Value of or(neg(xC.804)) ,neg(yC..804))):

or(neg(xC..804)) ,neg(yC..804)))
Applying Rule IA to inl(g4C..804))

Value of and(or(neg(xC..804)) ,neg(yC.804))) ,yC.804)):

and(or(neg(xC..804)) ,neg(yC.804))) ,yC.804))
Value of or(and(xC..804) ,or(neg(xC.804)) ,neg(yC..804)))),

and(or(neg(xC..804)) ,neg(yC.804))) ,yC.804))):

or(and(xQ-8O4) ,or(neg(xC.804)) ,neg(yC..804)))),

and(or(neg(xC.804)) ,neg(yQ-8O4))) ,yC.804)))
Value of neg(or(and(xC..804) ,or(neg(xC..804)) ,neg(yC.804)))),

and(or(neg(xC.804)) ,neg(yC..804))) ,yQ-8O4)))):
and(or(neg(xC-8O4)) ,and(xC..804) ,yC..804))) ,or(and(xC..804) ,yC-8O4)),

neg(yC-8Q4))))

Applying Rule 3 to neg(inl(gSC.804)))

Applying Rule 1A to inl(gSC.804))
Value of neg(cinC.804)):

B3-9

neg(cin(-.804))

Value of or~and(or(neg(xC..804)) ,and(xC.804) ,yC.8O4))) ,or(axid(xC.804),
yL-8O4)),neg(yL-8O4)))),neg(cinC.804))):

or(axid(or(neg(xQ-8O4)) ,and(xC..804) ,yQ-8O4))) ,or(and~xC.804),

yC..8O4)) ,neg(yQ-8O4)))) ,neg(cint..804)))
Value of and(or(and(xC..804) ,or(neg(xC..804)) ,neg(yC.804))))I

and(or(neg(xC..804)) ,neg(yC..804))) ,yQ-8O4))),
or(and(or(neg(xC..804)),and(xC.804) ,yC.8O4))),

or(and(xC.804) ,yC..8O4)) ,neg(yC.804)))) ,neg(cin(-.804)))):
and(or(and(xC.804) ,or(neg(xC.804)) ,neg(yC.804)))),

and(or(neg(xC.804)) ,neg~yC..804))) ,yC..8O4))),

or(and(or(neg(xC..804)) ,and(xC.804) ,yQ-8O4))),

or(and(xC.804) ,yC-8O4)) ,neg(yC..804)))) ,neg(cinC..804))))
Applying Rule 4 to and(or(neg(ino(g5C.804))) ,neg(inl(gSC..8C4)))),

inl(g5C..804)))

Applying Rule 5 to or(neg(ino(g5C..804))) ,neg(ini(g5C.804))))

Applying Rule 3 to neg(inO(gSC..804)))
Applying Rule 1B to inO(g5Q-8O4))

Applying Rule 2B to out(g4C.804))
xor's derived behavior:

out~g4(..804)) := or(and~inO(g4C.804)) ,or(neg(ino(g4Q-8O4))),

neg(inl~g4C.804))))) ,and(or(neg(inO(g4C..804))),
neg(inl(g4C..804)))) ,inl(g4C..804))))

Applying Rule 5 to or(and(inO(g4C.804)) ,or(neg(ino(g4C.804))),
neg(inl~g4Q-8O4))))) ,and(or(neg(inO(g4C.804))),

neg~inl(g4C..804)))) ,inl(g4C.804))))
Applying Rule 4 to a~nd(inO(g4C.804)) ,or(neg(inO~g4C-8O4))),

neg(inl(g4Q-8O4)))))
Applying Rule IA to inO(g4C.804))
Applying Rule 5 to or(neg(ino(g4C..804))) ,neg(inl(g4C-8O4))))

Applying Rule 3 to neg(inO(g4C.804)))

Applying Rule IA to inO(g4C.804))
Value of neg(xC..804)):

neg(x(-.804))

Applying Rule 3 to neg(inl(g4C.804)))

Applying Rule IA to inl~g4C-804))
Value of neg(yC.804)):

neg(yC.804))

Value of or(neg(x(-.804)) ,neg(y(-.804))):
or~neg(xC.804' } ,neg(yQ-8O4)))

Value of and(xC.804) ,or(neg(xC..804)) ,neg(yC..804)))):

and(xC.804) ,or(neg(x(-.804)) ,neg(yQ-8O4))))

Applying Rule 4 to and(or(neg~ino(g4C..804))) ,neg(inl(g4C..804)))),
inl(g4C.804)))

Applying Rule 5 to or(neg(ino(g4Q-8O4))) ,neg~inl(g4C.804))))

B-10

Applying Rule 3 to neg~inO(g4C.804)))

Applying Rule 1A to inO(g4C.804))
Value of neg(x(_.804)):

neg(xC.804))
Applying Rule 3 to neg(inl(g4C.804)))

Applying Rule 1A to inl(g4Q-8O4))
Value of neg(yC.804)):

neg(yC..804))

Value of or(neg(xC..804)) ,neg(yC..804))):
or(neg(xQ-8O4)) ,neg(yC.804)))

Applying Rule 1A to inl(g4L-8O4))
Value of and(or(neg(xC.804)) ,neg(y(-.804))),y(-.804)):

and(or(neg(xL-8O4)) ,neg(yC..804))) ,yC..804))
Value of or(and(xC.804),or(neg(xQ-8O4)) ,neg(yQ-8O4)))),

and(or(neg(xQ-8O4)) ,neg(yQ-8O4))) ,yC.804))):
or(and(xC.804) ,or(neg(xC.804)) ,neg(yC.804)))),

and(or(neg(xCSO04)) ,neg(yC.804))) ,yC.804)))
Value of neg(or(and(xC.804) ,or(neg(xC.804)) ,neg(yC.804)))),

and(or(neg(xQ-8O4)) ,neg(yQ-8O4))) ,yC.804)))):
and(or(neg(xt-804)) ,and(xQ-8O4) ,yC.804))) ,or(and(xC..804),

yQ-8O4)) ,neg(yC.804))))
Applying Rule 3 to neg(inl(g5C.804)))
Applying Rule 1A to inl(g5C.804))

Value of neg(cinC..804)):

neg(cinC.804))

Value of or(and(or(neg(xC.804)) ,and(x(_804) ,yC..804))),
or(and(xC.804) ,yC.804)) ,neg(yC..804)))) ,neg(cinQ-8O4))):

or(and(or(neg(xC..804)),and(x(_.804),y(-.804))),

or(and(xC-8O4) ,yC.8O4)) ,neg(yC.804)))) ,neg(cinC.804)))
Applying Rule 1A to inl(g5C..804))
Value of and(or(and(or(neg(xC.804)) ,and(xC..804) ,yC.804))),

or(and(xC.804) ,yC.804)) ,neg(yC..804)))),

neg(cinL-8O4))) ,cinC.804)):
and(or(and(or(neg(xC.804)),and(xC.804),yC.804))),

or(and(xC.804) ,yC.804)) ,neg(yC.8O4)))),
neg(cinLBO04))) ,cin(-.804))

Value of or(and(or(and(xC.804) ,or(neg(xC.804)) ,neg(yC.804)))),

and(or(neg(xC.804)) ,neg(yC..804))) ,yC..804))),
or(and(or(neg(xC..804)) ,and(xC..804) ,y(-.804))),

orkand(x(-.8O4) ,y(-bO4)) ,neg(yC..804)))),
neg(cint.804)))) ,and(or(and(or(neg(xC..804)),

and(xC.804) ,yC..804))) ,or(and(xC..804) ,yC..804)),
neg(yC..804)))) ,neg(cinC..804))) ,cinC.804))):

or(and(or(and(x(-.804) ,or(neg(x(-.804)) ,neg(yC..804)))),
and(or(neg(x(_804)) ,neg(yC..804))) ,yC. 804))),

or(and(or(neg(xC.804)) ,axid(x(..804) ,yC.8O4))),

or(and(xC.804) ,yC..8O4)) ,neg(yC.804)))) ,neg(cinQ-8O4)))),

and(or(and(or(neg(xC..804)) ,and(xQ-804) ,yC.8O4))),

or(and(xC.804) ,yC.804)) ,neg(yC.804)))) ,neg(cinQ-8O4)))I
cinQ-8O4)))

Does or(and(or(axid(xQ-804) ,or(neg(xC.804)) ,neg(yC..804)))),

and(or(neg(xC.804)) ,neg(yC..804))),yC..804))),

or(and(or(neg(xC.804)) ,and(xC.804) ,yC.804))),

or(and(xC..804) ,yC..8O4)) ,neg(yC.804)))) ,neg(cinC.804))))I

and(or(and(or(neg(xC.804)) ,and(xC.804) ,yC..8O4))),

or(and(xC.804) ,yC..8O4)) ,neg(yC.804)))) ,neg(cinC.804))),

cinC.804))) =

xor(xor(xC..804) ,yC.804)) ,cinC.804))

or(and(or(and(xC-804) ,or(neg(xC..804)) ,neg(yC..804)))) ,and(or(neg(xC.804)),

neg(yC-804))) ,yC.8O4))) ,or(and(or(neg(xC-8O4)),

and(xC.804) ,yC.8O4))) ,or(and(xL-804) ,yC.8O4)),

neg(yQ-8O4)))) ,neg(cinC..804)))) ,and(or(and(or(neg(xQ-804)),

and(xC.804) ,yC.8O4))) ,or(and(xC.804) ,yC.8O4)) ,neg(yC-8O4)))),

neg(cinC.804))) ,cinC..804)))=

xor(xor(xC..804) ,yC..804)) ,cin(..804))
By Boolean Expansion

output list is [outcarryC.855)]
derived list is[outcarryC.932)]

Outnum. isi

Derived number isi

<<< Success! Behavior of faddxor meets its specification.

yes

I ?- ['qctrld.pro'IJ.
[consulting /usr/users/ela/labovitz/newverify/qctrld.pro ...]

[consulting /usr/users/ela/labovitz/newverify/qops .pro .. .
[WARNING, goal failed: :- unknown(trace,fail)]

[qops.pro consulted 0.350 sec -4,520 bytes]

[consulting /usr/users/ela/labovitz/newverify/eval .pro ...]
[WARNING: Singleton variables, clause 3 of evaluate-.brown/2: F]

[eval.pro consulted 0.717 sec 0 bytes]

[consulting /usr/users/elaflabovitz/newverify/derbeh.pro...]

[WARNING: Singleton variables, clause 1 of derive-.behaviors/3: Spec-.Behavior]

[WARNING: Singleton variables, clause 2 of derive..behaviors/3: Spec-Behavior]

[WARNING: Clauses for derive-.behavior/3 are not together in the source file]

[WARNING: Singleton variables, clause 1 of derive-.behavior/3: F]

[WARNING: Singleton variables, clause 2 of derive-.behavior/3: F]

[WARNING: Singleton variables, clause 8 of derive-.behavior/3: Module]

[derbeh.pro consulted 0.983 sec 0 bytes]

[consulting /usr/users/ela/labovitz/newverify/derstate.pro ...]1

13-12

[WARNING: Singleton variables, clause 1 of derive-states/3: Type, Part]
[WARNING: Singleton variables, clause 1 of replace-all/5: Part]
[WARNING: Singleton variables, clause 2 of replace-all/5: Module, Old, New]
[WARNING: Singleton variables, clause 1 of replace/4: Old, New]
[WARNING: Singleton variables, clause 2 of replace/4: Old, New]
[WARNING: Singleton variables, clause 3 of replace/4: New, Argl]
[WARNING: Singleton variables, clause 11 of replace/4: Old, New]
[derstate.pro consulted 0.950 sec 0 bytes]
[consulting /usr/users/ela/labovitz/newverify/counter.pro...]

[WARNING: Singleton variables, clause 1 of port/4: AnInc]
[WARNING: Singleton variables, clause 2 of port/4: AnInc]
[WARNING: Clauses for module-name/1 are not together in the source file]
[WARNING: Clauses for port/4 are not together in the source file]
[WARNING: Singleton variables, clause 1 of port/4: AMux]
[WARNING: Singleton variables, clause 2 of port/4: AMux]
[WARNING: Singleton variables, clause 3 of port/4: AMux]
[WARNING: Singleton variables, clause 4 of port/4: AMux]
[WARNING: Clauses for output-eqn/2 are not together in the source file]
[WARNING: Singleton variables, clause 1 of port/4: AReg]
[WARNING: Singleton variables, clause 2 of port/4: AReg]
[WARNING: Singleton variables, clause 1 of state-of/3: AReg]
[WARNING: Singleton variables, clause 1 of port/4: ACounter]
[WARNING: Singleton variables, clause 2 of port/4: ACounter]
[WARNING: Singleton variables, clause 3 of port/4: ACounter]
[WARNING: Singleton variables, clause I of part/3: ACounter]
[WARNING: Singleton variables, clause 2 of part/3: ACounter]
[WARNING: Singleton variables, clause 3 of part/3: ACounter]
[WARNING: Clauses for state-of/3 are not together in the source file]
[WARNING: Singleton variables, clause I of stateof/3: ACounter]
[WARNING: Clauses for state-eqn/2 are not together in the source file]
[counter.pro consulted 1.217 sec 3,704 bytes]
[consulting /usr/users/ela/labovitz/newverify/boole2.pro...]

[WARNING: Singleton variables, clause 1 of remove_x_1/3: X]
[WARNING: Singleton variables, clause 2 of remove_x_1/3: X]
[WARNING: Singleton variables, clause 3 of remove_x_1/3: Arg2]
[WARNING: Singleton variables, clause 4 of remove-x_1/3: Arg, Argl, Arg2]
[WARNING: Singleton variables, clause 5 of remove_x_1/3: Arg2]
[WARNING: Singleton variables, clause 6 of remove_x_1/3: Arg2]
[WARNING: Singleton variables, clause 1 of remove-x_0/3: X]
[WARNING: Singleton variables, clause 2 of remove-x_0/3: X]
[WARNING: Singleton variables, clause 3 of remove-x_0/3: Arg2]
[WARNING: Singleton variables, clause 4 of remove-x_0/3: Arg2]
[WARNING: Singleton variables, clause 5 of remove-x_0/3: Arg2]
[WARNING: Singleton variables, clause 6 of remove_x_0/3: Arg2]
[boole2.pro consulted 1.850 sec 0 bytes]

B-i1:3

[consulting /usr/users/ela/labovitz/newverify/eqbeh.pro...1
[WARNING: Singleton variables, clause I of eqb/3: M]
[WARNING: Singleton variables, clause 2 of eqb/3: N]
[WARNING: Clauses for eqb/3 are not together in the source file]
[eqbeh.pro consulted 0.400 sec 0 bytes]
[consulting /usr/users/ela/labovitz/newverify/verify.pro...]
[verify.pro consulted 0.833 sec 0 bytes]

[qctrld.pro consulted 7.816 sec -616 bytes]

yes

I ?- verify(counter).
>>> Attempting to verify counter>>>
>>>mux primitive (needs no verification)>>>
>>>reg primitive (needs no verification)>>>
>>>inc primitive (needs no verification)>>>
component list is [inc]
Applying Rule 1B to out(_681)
Applying Rule 2A to out(regA(_681))
reg's output equation:

out(regA(_681)) := contents(regA(_681))
Applying default Rule to contents(regA(_681))
Derived Behavior: contents(regA(_681))
Rule 1
Rule4
Rule4
Rule4
Value of count(_681):

count(_681)
Value of count(_681):

count(.681)
Value of count(_681):

count(_681)
Substituted Behavior: count(_681)
output list is [out(_729)]

derived list is[out(_784)]
Outnum isl

Derived number isl
Applying Rule 1B to in(regA(_1277))
Applying Rule 2A to out(muxA(_1277))
mux's output equation:

out(muxA(_1277)) := if(switch(muxA(_1277)),inl(muxA(_1277)),

inO(muxA(_1277)))
Applying Rule 6 to if(switch(muxA(_1277)),inl(muxA(_1277)),i) k.muxA(_1277)))
Applying Rule 1A to switch(muxA(_1277))
Applying Rule 1A to inl(muxA(_1277))

1-14

Applying Rule 1B to inO(muxAC.1277))

Applying Rule 2A to out(incA(-1277))
inc's output equation:

out(incA(-1277)) := 1+in(incA(-1277))
Applying Rule 7 to 1+in(incAC.1277))

Applying default Rule to 1

Applying Rule 1B to in(incA(-1277))

Applying Rule 2A to out(regA(-1277))

reg's output equation:
out(regk(-1277)) := contents(regA(-1277))

Applying default Rule to contents(regAC.1277))

Value of 1+contents(regA(-1277)):

1+contents (regA (..1277))

Value of if(ctrlC.1277) ,in(-1277),l+contents(regA(..1277))):

if(ctrlC.1277) ,inC.1277) ,lecontents(regA(-1277)))

Derived Behavior: if(ctrlC.1277) ,inC.1277) ,l~contents(regA(_1277)))

Rule if

Rule4

Rule4

Rule +

Rul e2

Rule 1

Rule if

Rul e4

Rule4

Rule +

Rule2

Rule4

Rule if

Rule4

Rule3

Rule struct

Rule +

Rule2

Rule4

Rule if

Rule4

Rule4

Rule +

Rule2

Rule4

Value of if(ctrlC.1277),in(-.1277),1+countC.1277)):

if CctrlC.1277) ,inC.1277) ,1+countC.1277))
Value of if(ctrlC.1277),inC.1277),1+count(-1277)):

if(ctrlC.1277) ,inC.1277) ,l+countC.1277))

B- I"

Value of if(ctrlC.1277),inC.1277),l+countC.1277)):

if(ctrl(_1277) ,in(.1277) ,l+count(_1277))

Substituted Behavior: if (ctrl(-1277) ,ir..(_277) ,l~countC..1277))
Value of if(ctrl(-1277),inCJ1277),l+countC..1277)):

if(ctrl(-1277) ,inC..1277) ,1+count(-1277))

Value of if(ctrl(-1277),inC..1277),countC.1277)+l):

if(ctrlC..1277) ,in(-1277) ,1+count(-.1277))

Derived behavior is: if(ctrl(-1277) ,in(-1277) ,l+count(-1277))

state list is [countC..1311)]

derived list is[count(-1377)]

Statenum isi

Derived number isi

<<< Success! Behavior of counter meets its specification.

yes

I ?- -D

csh> exit

csh>

script done on Fri Aug 2 14:32:36 1991

B.2 Sample Verification Runs Using New AFITNVERIFY

B.2.1 Verification of One-Bit Full Adder faddxor.pl

Script started on Mon Nov 25 09:11:38 1991
csh> AFIT-gerify

Welcome to AFITVERIFY!

(Type ? at any prompt if you require help)

Performing AFITVERIFY Verification!

Select your action from the following choices:
Preload the previously verified components into the database

(This may increase execution speed of a verification run)
Reverify a component from the component library
List the nonprimitive components which have been verified this session
Insert a component into the component library area
Extract a component from the library area into current directory
Verify a new component from the current directory
Halt the program and exit Prolog

(Note: this option -is- revocable at the next menu!)

Enter your choice: preload, reverify, list, verify, insert, extract, halt: r
Choices: [xor,faddxor,counter,inv]: f
Should this verification run be executed in TERSE mode? [yes]: y

[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/multdyn.pl...]

[multdyn.pl consulted 0.333 sec 0 bytes]
[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/faddxor.pl...]
[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/primitive.pl...]
[primitive.pl consulted 0.516 sec 2,932 bytes]
[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/xor.pl...]
[xor.pl consulted 0.483 sec 1,556 bytes]

[faddxor.pl consulted 1.833 sec 7,404 bytes]
Component file faddxor loaded
--- Beginning verification of module faddxor

>>> Attempting to verify non-primitive module faddxor>>>
>>>nand2 primitive (needs no verification)>>>

>>>nand2 previously verified >>>

>>>nand2 previously verified >>>

B-I17

>>> Attempting to verify non-primitive module xor»>>

»>>nand2 previously verified »>>

»>>nand2 previously verified »>>

»>>nand2 previously verified »>>

»>>nand2 previously verified »>>

+> Module xor has verified submodules: [nand2]

Applying Derive-.Behavior Rule 2A to out(g4Q-8432)) of
primitive component nand2:

nand2's output equation:

out(g4C-8432)) := or(neg(ino(g4C.8432))),neg(inl(g4C.8432))))

Applying Derive-Behavior Rule 2A to out(g2C-8432)) of

primitive component nand2:

nand2's output equation:

out(g2C.-8432)) := or(neg(ino(g2C..8432))),neg(inl(g2Q-8432))))

Applying Derive-.Behavior Rule 2A to out(glC.8432)) of
primitive component nand2:

nand2's output equation:

out(g1Q-8432)) := or(neg(ino(gl1Q8432))),neg(inl(glC..8432))))

Value of neg(or(neg(inOC..8432)),neg(in1Q-8432)))):

and(in0Q_8432) ,inl1C8432))

Value of neg(or(neg(in0Q-8432)),and(inOC..8432),inl(_.8432)))):

and(in0C_8432),or(neg(inO(..8432)),neg(inl(..8432))))

Applying Derive-Behavior Rule 2A to out(g3C-8432)) of

primitive component nand2:

nand2's outpnt equation:

out(g3Q-843'Ž)) := or(neg(inO(g3C-8432))),neg(inl(g3Q-8432))))

Applying Derive-Behavior Rule 2A to out(gl(-8432)) of

primitive component nand2:
nand2's output equation:

out(glC..8432)) := or(neg(inO(glC.8432))),neg(inl(gl1Q8432))))

Value of neg(or(neg(in0Q-8432)) ,neg(inlC.8432)))):

and(in0Q-8432) ,in1C-8432))

Value of neg(or(and(in0Q-8432) ,inlC..8432)) ,neg(inlC..8432)))):

and(or(neg(in0C-8432)) ,neg(in1C-8432))) ,inlC..8432))

Does or(and(inOC..8432),or(neg(inOC.8432)),neg(inlC..8432)))),

and(or(neg(inoC.8432)) ,neg(inlC..8432))) ,inl1C8432)))=

or (and (neg (in0Q(8432)), inl (_8432)),and (in0Q8432) neg (inlC..8432))) ???

or(and(in0C-8432) ,or(neg(in0Q-8432)) ,neg(inl(-.8432)))),
and(or(neg(inoC.8432)),neg(inl1C8432))),inlC.8432)))

or(and(neg(inoC.8432)) ,ini (8432)),and (in0Q(8432),neg(inl (8432)))

By Boolean Expansion

For module xor:

Specified output list is [out (-.85O2)]
Derived output list is [outC..8541)]

Number of specified outputs is 1
Number of derived ouputs is 1

[outC-8502)] matches with [outC-8541)]

<<< Success! Behavior of xor meets its specification.«<<

»>>xor previously verified »>>

+> Module faddxor has verified submodules: [nand2,xor]

Applying Derive-Behavior Rule 2A to out(g3C.8202)) of

primitive component nand2:

nand2's output equation:
out(g3(-8202)) := or(neg(ino(g3L-82O2))),neg(inl(g3C.8202))))

Applying Derive-Behavior Rule 2A to out(glC.8202)) of

primitive component nand2:

nand2's output equation:

out(gl1C82O2)) := or(neg(ino(glC.8202))),neg(inl(glC..8202))))

Value of neg(or(neg(x(..8202)),neg(y(..8202)))):

and(x(-82O2) ,y(..8202))

Applying Derive-.Behavior Rule 2A to out(g2C-82O2)) of

primitive component nand2:

nand2's output equation:

out(g2C.8202)) :=or(neg(ino(g2C.8202))) ,neg(inl(g2C.8202))))

Applying Derive-.Behavior Rule 2B to out(g4C..8202)) of

nonprimitive component xor:

xor's derived behavior:
out(g4C.8202)) := or(and(inO(g4C..8202)),or(neg(inO(g4C..8202))),

neg(in1(g4C.8202))))),
and(or(neg(ino(g4C-82O2))),neg(inl(g4C-82O2)))),inl(g4Q-82O2))))

Value of neg(or(and(xC.8202) ,or(neg(xC..8202)) ,neg(yQ-82O2)))),

and(or(neg(xC.8202)),neg(yL-82O2))),yC.8202)))):

and(or(neg(xC..8202)) ,and(xC-82O2) ,yQ-822))),

or(and(xC.8202) ,y(-.82O2)) ,neg(yC-82O2))))

Value of neg(or(neg(cinQ-82O2)) ,and(or(neg(xQ-82O2)) ,and(xC..8202) ,yQ-82O2))),

or(and(xC..8202) ,yC.8202)) ,neg(yQ-82O2)))))):

and(cinQ-82O2) ,or(and(xC.8202) ,or(neg(xC..8202)) ,neg(yL-82O2)))),

and(or(neg(x(..8202)) ,neg(yC-82O2))) ,yL-82O2))))

Does or(and(xQ-82O2),yC.8202)),and(cinQ-82O2),or(and(xC-82O2),or(neg(xC-82O2)),

neg(yQ-82O2)))) ,and(or(neg(xC-82O2)) ,neg(yC-82O2))) ,yC-82O2))))) =

or(and(xC..8202),y(-.8202)),and(cinL-82O2),xor(xC.8202),yL-82O2)))) ???

or(and(xQ..8202) ,yQ-82O2)) ,and(cinQ-82O2) ,or(and(xC.8202) ,or(neg(xC-82O2)),

neg(yC.8202)))),and(or(neg(x(_82O2)),neg(yQ-82O2))),yC-82O2)))))=

or(and(xQ-82O2) ,yQ-822)) ,and(cinC-8202) ,xor(xC-82O2) ,y(_822))))

By Boolean Expansion

Applying Derive-Behavior Rule 2B to out(g5(-8202)) of

nonprimitive component xor:

xor's derived behavior:
out(g5(..8202)) := or(and(inO(g5C.8202)) ,or(neg(inO(g5C-82O2))),

neg(inl(g5C-82O2))))),

and(or(neg(ino(g5C-82O2))),

neg(inl(g5C..8202)))) ,inl(g5C-82O2))))

Applying Derive-.Behavior Rule 2B to out(g4C-82O2)) of
nonprimitive component xor:

xor's derived behavior:

out(g4C-82O2)) := or(and(inO(g4Q-82O2)),or(neg(inO(g4C-82O2))),

neg(inl(g4C..8202))))) ,axid(or(neg(inO(g4C..8202))),

neg(inl(g4C.8202)))) ,inl(g4(-8202))))

Applying Derive-.Behavior Rule 2B to out(g4C.8202)) of

nonprimitive component xor:

xor's derived behavior:

11-20)

out(g4C..8202)) :=or(and(inO(g4C..8202)) ,or(neg(inO(g4C..8202))),

neg(inl(g4C-82O2))))) ,and(or(neg(inO(g4C..8202))),

neg(inl(g4C-82O2)))),inl(g4C..8202))))

Value of neg(or(and(xQ-82O2) ,or(neg(xC..8202)) ,neg(y(-8202)))),
and~or(neg(xC.8202)) ,neg(yQ-82O2))) ,yC82O2)))):

and(or(neg(xQ-82O2)) ,and(xC.8202) ,yC-8202))),
or(and(xC-82O2) ,yC.8202)),neg(yC.8202))))

Applying Derive-Behavior Rule 2B to out(g4C.8202)) of
nonprimitive component xor:

xor's derived behavior:

out(g4C.8202)) :=or(and(inO(g4(-.8202)),or(neg(inO(g4C..8202))),

neg(inl(g4C.8202))))) ,and(or(neg(inO(g4(..8202))),
neg(inl(g4Q-82O2)))) ,inl(g4Q-82O2))))

Value of neg(or(and(xQ-82O2) ,or(neg(xC.8202)) ,neg(yC.8202)))),
and(or(neg(xC..8202)),neg(yC.8202))),yC.8202)))):

and(or(neg(xC-82O2)) ,and(xQ-82O2) ,yQ-822))),
or(and(xC.8202) ,yQ-82O2)) ,neg(yC-82O2))))

Does or(and(or(and(xQ-82O2) ,or(neg(xC.8202)) ,neg(yC-82O2)))),

and(or(neg(xC-82O2)) ,neg(yC.8202))) ,yQ-82O2))) ,or(and(or(neg(x(-.8202)),
and(x(..8202) ,yC-82O2))) ,or(and(x-82O2) ,yC..82O2)) ,neg(yC-82O2)))),

neg(cinC.8202)))),and(or(and(or(neg(xC..8202)) ,and(xL-82O2),yL-82O2))),
or(and(xC.8202) ,yC-82O2)) ,neg(yC..8202)))) ,neg(cinC..8202))),

cinC-8202))) =

xor(xor(x(-.8202) ,y(..8202)) ,cin(_.8202)) ???

or(and(or(and(xC.8202) ,or(neg(xL-82O2)) ,neg(yC-82O2)))) ,and(or(neg(xC-82O2)),

neg(yC-82O2))) ,yC..82O2))) ,or(and(or(neg(xC..8202)) ,and(xC..8202),

yQ-82O2))) ,or(and(xC..8202) ,y(..82O2)) ,neg(yQ-82O2)))),
neg(cinL-82O2)))) ,'md(or(and(or(neg(xC.8202)) ,and(x(_8902) ,y(_8202))),
or(and(x(-8202),yC.8202)),neg(yC.8202)))),neg(cin(-8202))),

cinQ-82O2))) =

xor(xor(xC..8202) ,yQ-82O2)) ,cinC.8202))

By Boolean Expansion

For module faddxor:

Specified output list is [outcarry(-8288),outýsum(-8272)]

Derived output list is [outcarryC.8329),outsum(..8345)]

Number of specified outputs is 2
Number of derived ouputs is 2

[outcarryC-8288) ,outsumC.-8272)] matches with [outcarryC..8329) ,outsumC.8345)]

11-21

<<< Success! Behavior of faddxor meets its specification.<<<

>>>> Component faddxor verified! <<<<

Performing AFITVERIFY Verification!

Select your action from the following choices:
Preload the previously verified components into the database

(This may increase execution speed of a verification run)
Reverify a component from the component library
List the nonprimitive components which have been verified this session
Insert a component into the component library area
Extract a component from the library area into current directory
Verify a new component from the current directory
Halt the program and exit Prolog

(Note: this option -is- revocable at the next menu!)

Enter your choice: preload, reverify, list, verify, insert, extract, halt: 1

The part "faddxor" has been previously verified during this session.
The part "xor" has been previously verified during this session.
The part "nand2" has been previously verified during this session.

Performing AFITVERIFY Verification!

Select your action from the following choices:
Preload the previously verified components into the database

(This may increase execution speed of a verification run)
Reverify a component from the component library
List the nonprimitive components which have been verified this session
Insert a component into the component library area
Extract a component from the library area into current directory
Verify a new component from the current directory
Halt the program and exit Prolog

(Note: this option -is- revocable at the next menu!)

Enter your choice: preload, reverify, list, verify, insert, extract, halt: h
Do you really want to halt Prolog? y/n [n]? y
csh> exit
csh>
script done on Mon Nov 25 09:12:18 1991

13-22

R.2.2 Verification of Exclusive Or xor. pi (Verbose Alode)

Script started on Mon Nov 25 09:12:25 1991
csh> AFITVerify

Welcome to AFITVERIFY!

(Type ? at any prompt if you require help)

Performing AFITVERIFY Verification!

Select your action from the following choices:
Preload the previously verified components into the database

(This may increase execution speed of a verification run)
Reverify a component from the component library
List the nonprimitive components which have been verified this session
Insert a component into the component library area
Extract a component from the library area into current directory
Verify a new component from the current directory
Halt the program and exit Prolog

(Note: this option -is- revocable at the next menu!)

Enter your hoice: preload, reverify, list, verify, insert, extract, halt: r
Choices: [x_-,faddxor,counter,inv]: ?
Please enuor one of these constants:
[xor,faddxor,counter,inv]
followed by a RETURN. Do not add a full stop.
Choices: [xor,faddxor,counter,inv]: xor
Should this verification run be executed in TERSE mode? [yes]: no

[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/multdyn.pl...]

[multdyn.pl consulted 0.367 sec 0 bytes]
[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/xor.pl...]
[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/primitive.pl...]
[primitive.pl consulted 0.533 sec 2,932 bytes]

[xor.pl consulted 1.100 sec 4,908 bytes]
Component file xor loaded....

--- Beginning verification of module xor

>>> Attempting to verify non-primitive module xor>>>
>>>nand2 primitive (needs no verification)>>>

>>>nand2 previously verified >>>

B-23

>>>nand2 previously verified >>>

>>>nand2 previously verified >>>

+> Module xor has verified submodules: [nand2]

Applying Derive-Behavior Rule 1B to out(_8019)
Applying Derive-Behavior Rule 2A to out(g4(_8019)) of

primitive component nand2:
nand2's output equation:

out(g4(_8019)) := or(neg(inO(g4(_8019))),neg(inl(g4(_8019))))

Applying Derive-Behavior Rule 5 to or(neg(inO(g4(_8019))),neg(inl(g4(_8019))))
Applying Derive-Behavior Rule 3 to neg(inO(g4(_8019)))
Applying Derive-Behavior Rule 1B to inO(g4(_8019))
Applying Derive-Behavior Rule 2A to out(g2(_8019)) of

primitive component nand2:
nand2's output equation:

out(g2(_8019)) := or(neg(inO(g2(_80l9))),neg(inl(g2(_8019))))

Applying Derive-Behavior Rule 5 to or(neg(inO(g2(_8019))),neg(inl(g2(_8019))))
Applying Derive-Behavior Rule 3 to neg(inO(g2(_8019)))
Applying Derive-Behavior Rule IA to inO(g2(_8019))

Value of neg(inO(_8019)):

is already canonical.
Applying Derive-Behavior Rule 3 to neg(inl(g2(_8019)))
Applying Derive-Behavior Rule 1B to inl(g2(_8019))
Applying Derive-Behavior Rule 2A to out(gl(_8019)) of

primitive component nand2:
nand2's output equation:

out(gl(_8019)) := or(neg(inO(gl(_80l9))),neg(inl(gl(_8019))))

Applying Derive-Behavior Rule 5 to or(neg(inO(gl(_8019))),neg(inl(gl(_8019))))
Applying Derive-Behavior Rule 3 to neg(inO(gl(_8019)))
Applying Derive-Behavior Rule IA to inO(gl(_8019))

Value of neg(inO(_8019)):
is already canonical.

Applying Derive-Behavior Rule 3 to neg(inl(gl(_8019)))

Applying Derive-Behavior Rule 1A to inl(gl(_8019))

Value of neg(inl(_8019)):

is already canonical.
Value of or(neg(inO(_80l9)),neg(inl(_8019))):

13-24

is already canonical.
Value of neg(or(neg(inO(_8019)),neg(inl(_8019)))):

and(inO(_8019),inl(_8019))

Value of or(neg(inO(_8019)),and(inO(_8019),inl(_8019))):
is already canonical.

Value of neg(or(neg(inO(_8019)),and(inO(_8019),inl(_8019)))):
and(inO(_8019),or(neg(inO(_8ol9)),neg(inl(_8019))))

Applying Derive-Behavior Rule 3 to neg(inl(g4(_8019)))
Applying Derive-Behavior Rule IB to inl(g4(_8019))
Applying Derive-Behavior Rule 2A to out(g3(_8019)) of

primitive component nand2:
nand2's output equation:

out(g3(_8019)) := or(neg(inO(g3(_8Ol9))),neg(inl(g3(_8019))))

Applying Derive-Behavior Rule 5 to or(neg(inO(g3(_8019))),neg(inl(g3(_8019))))
Applying Derive-Behavior Rule 7 ýo neg(inO(g3(_8019)))
Applying Derive-Behavior Rule IB to inO(g3(_8019))
Applying Derive-Behavior Rule 2A to out(gl(_8019)) of

primitive component nand2:
nand2's output equation:

out(gl(_8019)) := or(neg(inO(gl(_8019))),neg(inl(gl(_8019))))

Applying Derive-Behavior Rule 5 to or(neg(inO(gl(_8Ol9))),neg(inl(gl(_8019))))
Applying Derive-Behavior Rule 3 to neg(inO(gl(_8019)))
Applying Derive-Behavior Rule 1A to inO(gl(_8019))

Value of neg(inO(_8019)):

is already canonical.
Applying Derive-Behavior Rule 3 to neg(inl(gl(_8019)))
Applying Derive-Behavior Rule 1A to inl(g1(8019))

Value of neg(inl(_8019)):
is already canonical.

Value of or(neg'inO(_8Ol9)),neg(inl(_8019))):
is already canonical.

Value of neg(or(neg(inO(_80l9)),neg(inl(_8019)))):
and(inO(_8019),inl(_8019))

Applying Derive-Behavior Rule 3 to neg(inl(g3(_8019)))
Applying Derive-Behavior Rule 1A to inl(g3(_8019))

Value of neg(inl(_8019)):

is already canonical.

B-25

Value of or(and(inO(_8019),inl(_8019)),neg(inl(_8019))):

is already canonical.
Value of neg(or(and(inO(_8019),inl(_8Ol9)),neg(inl(_8019)))):

and(or(neg(inO(_8019)),neg(inl(_8019))),inl(_8019))

Value of or(and(inO(_8Ol9),or(neg(inO(_8Ol9)),neg(inl(_8019)))),

and(or(neg(inO(_8019)),neg(inl(_8019))),inl(_8019))):

is already canonical.

Does or(and(inO(_8019),or(neg(inO(_8Ol9)),neg(inl(_8019)))),

and(or(neg(inO(_8019)),neg(inl(_8019))),inl(_8019))) =
or(and(neg(inO(_8019)),inl(_8ol9)),and(inO(_8019),neg(inl(_8019)))) ???

or(and(inO(_8019),or(neg(inO(_8019)),neg(inl(.8019)))),
and(or(neg(inO(_8019)),neg(inl(~8019))),inl(_8019))) =

or(and(neg(inO(_8019)),inl(_8019)),and(inO(_8019),neg(inl(_8019))))
By Boolean Expansion

For module xor :
Specified output list is [out(_8089)]
Derived output list is [out(_8128)]
Number of specified outputs is 1
Number of derived ouputs is 1

[out(_8089)] matches with [out(_8128)]

<<< Success! Behavior of xor meets its specification.<<<

>>>> Component xor verified! <<<<

Performing AFITVERIFY Verification!

Select your action from the following choices:
Preload the previously verified components into the database

(This may increase execution speed of a verification run)
Reverify a component from the component library
List the nonprimitive components which have been verified this session
Insert a component into the component library area
Extract a component from the library area into current directory
Verify a new component from the current directory
Halt the program and exit Prolog

(Note: this option -is- revocable at the next menu!)

B-26

Enter your choice: preload, reverify, list, verify, insert, extract, halt: 1

The part "xor" has been previously verified during this session.
The part "hand2" has been previously verified during this session.

Performing AFITVERIFY Verification!

Select your action from the following choices:
Preload the previously verified components into the database

(This may increase execution speed of a verification run)
Reverify a component from the component library
List the nonprimitive components which have been verified this session
Insert a component into the component library area
Extract a component from the library area into current directory
Verify a new component from the current directory
Halt the program and exit Prolog

(Note: this option -is- revocable at the next menu!)

Enter your choice: preload, reverify, list, verify, insert, extract, halt: halt
Do you really want to halt Prolog? y/n [n]? y
csh> exit
csh>
script done on Mon Nov 25 09:13:03 1991

B-27

B.2.3 Verification of Exclusive Or xor.p1 (Terse Mode)

Script started on Mon Nov 25 09:13:59 1991

csh> AFITVerify
Welcome to AFITVERIFY!

(Type ? at any prompt if you require help)

Performing AFITVERIFY Verification!

Select your action from the following choices:
Preload the previously verified components into the database

(This may increase execution speed of a verification run)

Reverify a component from the component library

List the nonprimitive components which have been verified this session

Insert a component into the component library area

Extract a component from the library area into current directory
Verify a new component from the current directory

Halt the program and exit Prolog

(Note: this option -is- revocable at the next menu!)

Enter your choice: preload, reverify, list, verify, insert, extract, halt: r

Choices: [xor,faddxor,counter,inv]: xor
Should this verification run be executed in TERSE mode? [yes]:

[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/multdyn.pl...]

[multdyn.pl consulted 0.350 sec 0 bytes]
[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/xor.pl... I

[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/primitive.pl...]
[primitive.pl consulted 0.517 sec 2,932 bytes]

[xor.pl consulted 1.066 sec 4,908 bytes]
Component file xor loaded....
--- Beginning verification of module xor

>>> Attempting to verify non-primitive module xor>>>

>>>nand2 primitive (needs no verification)>>>

>>>nand2 previously verified >>>

>>>nand2 previously verified >>>

>>>nand2 previously verified >>>

B-28

and(or(neg(inO(_8021)),neg(inl(_8021))),inl(_8021)))
or(and(neg(inO(_8021)),inl(_8021)),and(inO(_8021),neg(inl(_8021))))

By Boolean Expansion

For module xor :
Specified output list is [out(_8091)]
Derived output list is [out(_8130)]

Number of specified outputs is I
Number of derived ouputs is 1

[out(_8091)] matches with [out(_8130)1

<<< Success! Behavior of xor meets its specification.<<<

>>>> Component xor verified! <<<<

Performing AFITVERIFY Verification!

Select your action from the following choices:
Preload the previously verified components into the database

(This may increase execution speed of a verification run)
Reverify a component from the component library
List the nonprimitive components which have been verified this session
Insert a component into the component library area
Extract a component from the library area into current directory
Verify a new component from t1-e curr--t directory

Halt the program and exit Prolog
(Note: this option -is- revocable at the next menu!)

Enter your choice: preload, reverify, list, verify, insert, extract, halt: halt
Do you really want to halt Prolog? y/n [n]? y
csh> exit
csh>
script done on Mon Nov 25 09:14:23 1991

13-30

B.2.4 Verification of The Three-, Four-, and Five-Input NAND Implementations
nand3.pl, nand4.pl, and nand5.pl

Script started on Mon Nov 25 09:15:11 1991
csh> AFITVerify

Welcome to AFITVERIFY!

(Type ? at any prompt if you require help)

Performing AFITVERIFY Verification!

Select your action from the following choices:
Preload the previously verified components into the database

(This may increase execution speed of a verification run)
Reverify a component from the component library
List the nonprimitive components which have been verified this session
Insert a component into the component library area
Extract a component from the library area into current directory
Verify a new component from the current directory

Halt the program and exit Prolog
(Note: this option -is- revocable at the next menu!)

Enter your choice: preload, reverify, list, verify, insert, extract, halt: v
Name of module (file) to be verified (do not include .pl suffix): nand5
Should this verification run be executed in TERSE mode? [yes]:

[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/multdyn.pl...]
[multdyn.pl consulted 0.366 sec 0 bytes]
[consulting /usr/users/ela/labovitz/NewVerify/Work/Components/nand5.pl...1
[consulting /usr/users/ela/labovitz/NewVerify/Work/Components/nand3.pl...]
[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/primitive.pl...]

[primitive.pl consulted 0.517 sec 2,900 bytes]
[consulting /usr/users/ela/labovitz/NewVerify/Work/Components/inv.pl...]
[inv.pl consulted 0.267 sec 800 bytes]

[nand3.pl consulted 1.383 sec 5,696 bytes]
[nand5.pl consulted 1.917 sec 7,808 bytes]

Component file nand5 loaded
--- Beginning verification of module nand5

>>> Attempting to verify non-primitive module nandS>>>

>>> Attempting to verify non-primitive module nand3>>>
>>>nand2 primitive (needs no verification)>>>

B-31

+> Module xor has verified submodules: [nand2]

Applying Derive-Behavior Rule 2A to out(g4Q-8O21)) of-
primitive component nand2:

nand2's output equation:

out(g4C.8021)) := or(neg(ino(g4Q-8O21))) ,neg(inl(g4C..8021))))

Applying Derive-Behavior Rule 2A to out(g2Q-8O21)) of
primitive component nand2:

nand2's output equation:
out(g2L-8O21)) := or(neg(ino(g2C..8021))),neg(inl(g2C.8o21))))

Applying Derive-Behavior Rule 2A to out(gl1C8O21)) of
primitive component nand2:

nand2's output equation:
out(glLSO021)) := or(neg(ino(glC..8021))) ,neg(inl(glC..8021))))

Value of neg(or(neg(inOL-8O21)),neg(inl(-.8021)))):

and(inOC..8021) ,inlQ-8O21))

Value of neg(or(neg(inOL-8O21)),and(inOQ-8o21),inlC-8o21)))):

and(inO-8O21) ,or(neg(inOQ-8O21)) ,neg(ini(..8021))))

Applying Derive-Behavior Rule 2A to out(g3L-8O21)) of
primitive component nand2:

nand2's output equation:
out(g3C-8O21)) := or(neg(ino(g3C.8021))),neg(inl(g3Q-8o21))))

Applying Derive-Behavior Rule 2A to out(g1l-8O21)) of
primitive component nand2:

nand2's output equation:
out(gl1C8O21)) := or(neg(ino(glC.8021))),neg(inl(gl(-8o21))))

Value of neg(or(neg(inOQ-8O2l)),neg(inlQ-8o21)))):

and(in0C-8021) ,inl(..8021))

Value of neg(or(and(inOC.8021),inlC..8021)),neg(inlC-8o21)))):

and(or(neg(inoQ-8O2l)) ,neg(inl(-8021))) ,inlQ-8O21))

Does or(and(inO-8O21) ,or(neg(inOC..8021)),neg(inl(-8021)))),
and(or(neg(inoC-8021)) ,neg(inl(-8021))) ,inl1C8021)))

or(and(neg(ino0C8021)),inlC-8O21)),and(inO(-.8021),neg(inl(-8021),))) ???

or(and(inO-8021) ,or(neg(inOQ-8O21)) ,neg(inlC.8021)))),

B3-29)

>>>nand2 previously verified >>>

>>> Attempting to verify non-primitive module inv>>>

>>>nand2 previously verified >>>

+> Module inv has verified submodules: [nand2]

Applying Derive-Behavior Rule 2A to out(gl(_7582)) of

primitive component nand2:

nand2's output equation:

out(gl(_T582)) := or(neg(inO(gl(_T582))),neg(inl(gl(_7582))))

Does neg(in(_7582)) =
neg(in(_7582)) ???

or(neg(in(_7582)),neg(in(_7582)))

neg(in(_7582))
By Boolean Expansion

For module inv :

Specified output list is [out(_7652)]
Derived output list is [out(_7691)]

Number of specified outputs is 1

Number of derived ouputs is 1

[out(_7652)] matches with [out(_7691)]

<<< Success! Behavior of inv meets its specification.<<<

+> Module nand3 has verified submodules: [inv,nand2]

Applying Derive-Behavior Rule 2A to out(nand2_2(_7370)) of

primitive component nand2:

nand2's output equation:
out(nand2_2(_7370)) := or(neg(inO(nand2_2(_7370))),

neg(inl(nand2_2(_7370))))

Applying Derive-Behavior Rule 2B to out(invO(-7370)) of

nonprimitive component inv:

inv's derived behavior:
out(invO(_7370)) := or(neg(in(invo(_7370))),neg(in(irnO(_ 7 37 0))))

..-..

Applying Derive-Behavior Rule 2A to out(nand2-lCJ37O')) of
primitive component nand2:

nand2's output equation:
out(nand2-l(-37O)) := or(neg(inO(nand2-1C.7370))),

neg(inl(nand2-.1C.7370))))

Value of neg(or(neg(inOC..7370)),neg(in1l-7370)))):

and(inOC..7370) ,inl(_7370))

Applying Derive-.Behavior Rule 2A to out(nand2...1Q7370)) of

primitive component nand2:
nand2's output equation:

out(nand2-l(-7370)) := or(neg(inO(nand2-ICJ37O))),

neg(in1(nand2-IC737O))))

Value of neg(or(neg(in0C-7370)),neg(inl(-7370)))):

and(inO(_7370) ,inl(-7370))

Value of neg(or(and(inOC..7370) ,inlC.7370)) ,and(inO(-j37O) ,inlC.7370)))):

and(or(neg(inoC..7370)),neg(inlC..7370))),or(neg(inOC.7370)),

neg(inlC..7370))))

Does or(or(neg(inOCJ737O)),neg(inlC.7370))),neg(in2CJ7370)))

neg(and(and(ino(-7370) ,in1C.-737O)) ,in2C..7370))) ???

or(and(or(neg(ino(-7370)),neg(inlC..7370))),or(neg(in0Q-7370)),

neg(inlC.7370)))),neg(in2(-7370))) =

neg(and(and(inOCJ737O) ,inlC..7370)) ,in2Q-7370)))
By Boolean Expansion

For module nand3:

Specified output list is [outC.7440)]

Derived output list is [outC..7479)]

Number of specified outputs is 1

Number of derived ouputs is 1

[out(-7440)] matches with [out(-7479)]

<<< Success! Behavior of nand3 meets its specification.«<<

»>>nand3 previously verified »>>

Sprevýiczisly verified >>>

B1-33

+> Module nandS has verified submodules: [inv,nand3l

Applying Derive-Behavior Rule 2B to out(nand3..2C.7062)) of
nonprimitive component nand3:

nand3's derived behavior:

out(nand3-.2(-7062)) := or(axid(or(neg(inO(nand3-2C.7062))),

neg(inl(nand3-.2(-7062)))),

or(neg(inO(nand3..2C.7062))),

neg(inl(nand3-.2C.7062))))),

neg(in2(nand3.2CJ7062))))
Applying Derive-Behavior Rule 2B to out(invOCJO062)) of

nonprimitive component inv:
inv's derived behavior:

out(invOC-7Q62)) := or(neg(in(invOC.7062))),neg(in(invOQ-7O62))))

Applying Derive-Behavior Rule 2B to out(nand3_1C7O62)) of

nonprimitive component nand3:

nand3's derived behavior:
out(nand3_1(-O62)) := or(and(or(neg(inO(nand3-lQ7O62))),

neg(inI(nand3-I(-762)))),

or(neg(inO(nand3-1(30O62))),
neg(in1(nand3...1C.7062))))),

neg (in2 (nand3... (3062))))
Value of neg(or(and(or(neg(in0Q-7062)),neg(inl(-7062))),or(neg(inOC..7062)),

neg(inlCJO062)))) ,neg(in2C..7062)))):

and(or(and(in0Q-7062) , inl (-7062)), and (in0Q(7062), inI (7062)) ,in2Cj7062))

Applying Derive-Behavior Rule 2B to out(nand3-IjQ7062)) of
nonprimitive component nand3:

nand3's derived behavior:

out(nand3_1CJO62)) := or (and (or (neg in0 (nand3-JCJ762)))
neg(in1(nand3-1C.7062)))),

or(neg(inO(nand3-1(30O62))),

neg(in1(nand3-.1(-7062))))),

neg(in2(nand3-j(-762))))
Value of neg(or(and(or(neg(inO(-7062)),neg(inlCJO062))),or(neg(inO(-.7062)),

neg(inlC..7062)))) ,neg(in2(-.7062)))):
and(or(and(inO(-jO62) ,inlC..7062)) ,and(inO(-7062),

in1C.7062))) ,in2(-7062))

Value of neg (or (and(or (and (inO (7062) ,inl (-762)),and (inO (_7062) ,inl (7062)))
in2(-7062)) ,and(or(and(in0Q-7062) ,inl1Q7062)) ,and(in0(-7062),
inIC.7062))) ,in2(-.7062)))):

and(or(&nd(or(neg(inuC.-7062)) ,neg(inl(-7062))) ,or(neg(inO(-7062)),

neg(inlC.7062)))) ,neg(in2C..7062))) ,or(and(or(neg(inOC.7062)),

B3-34

neg(inl(-7062))) ,or(neg(ino(-7062)) ,neg(inl1Q7062)))),

neg(in2(-7062))))

Applying Derive-Behavior Rule 2B to out(invO(-7062)) of
nonprimitive component inv:

inv's derived behavior:
out(invOQ-7O62)) := or(neg(tn(invoQ-7O62))),neg(in(invOC.7062))))

Applying Derive-Behavior Rule 2B to out(nand3.1C.7062)) of

nonprimitive component nand3:
nand3's derived behavior:
out(nand3-1(-762)) :=or(and(or(neg(inO(na~nd3-lC.7062))),

neg(inl(nand3-I.1C7062)))),

or(neg(inO(nand3-1(30O62))),

neg(inI(nand3-1C.7062))))),

neg(in2(nand3-1 (3062))))
Value of neg(or(and(or(neg(ino(-7062)) ,neg(inl(-7062))),or(neg(inO(-7062)),

neg(inl(-7062)))),neg(in2C..7062)))):
and(or(and(in0Q-7062),inl(-jO62)),and(inO(-7062),inl1Q7062))),in2(_7062))

Applying Derive-Behavior Rule 2B to out(nand3_1(-7062)) of
nonprimitive component nand3:

nand3's derived behavior:
out(nand3_1(-062)) := or(and(or(neg(inO(nand3-lC.7062))),

neg(in1(nand3-C10-762)))),
or(neg(inO(nand3-1Q7O62))),

neg(inl(nand3-1(-7062))))),

neg(in2(nand3-1Q7O62))))
Value of neg(or(and(or(neg(in0C-7062)) ,neg(inl(-7062))),

or(neg(inO(-7062)) ,neg(inlC..7062)))) ,neg(in2(..7062)))):

and(or(and(inO(-jO62) ,inlC.7062)) ,and(inOC.7062) ,inl1Q7062))),in2C..7062))

Value of neg(or(and(or(and(inO(-7062) ,inlC.7062)) ,and(inO(-7062),

inl(-7062))) ,in2(-7062)) ,and(or(and(inO(-7062) ,inl(-7062)),
and(in0Q-7062),inl(-7062))),in2(-7062)))):

and(or(and(or(neg(inO(-7062)),neg(inl(-7062))),or(neg(inO(_7062)),

neg(inl(-7062)))),neg(in2(-7062))),or(and(or(neg(inO(-7062)),

neg(inlC.7062))),cr(neg(inoC..7062)),neg(inl(-.7062)))),

neg(in2(-7062))))

Does or(or(or(or(neg(inO(-7062)),neg(inl(-7062))),neg(in2(-7062))),

neg(in3C.7062))) ,neg(in4(-7062))) =

neg(and(and(in0C37062) ,inl(-7062)) ,and(in2C.7062),

and~in3(_jO62) ,in4(_j062))))) ???

B3-35

or(and(or(and(or(and(or(neg(ino(_7062)),neg(inl(_7062))),
or(neg(inO(_7062)),neg(inl(_7062)))),neg(in2(_7062))),

or(and(or(neg(ino(_7062)),neg(inl(_7062))),
or(neg(inO(_7062)),neg(inl(_7062)))),neg(in2(_7062)))),
neg(in3(_7062))),or(and(or(and(or(neg(inO(_7062)),
neg(inl(_7062))),or(neg(inO(_7062)),neg(inl(_7062)))),
neg(in2(_7062))),or(and(or(neg(inO(_7062)),neg(inl(_7062))),
or(neg(inO(_7062)),neg(inl(_7062)))),neg(in2(_7062)))),

neg(in3(_7062)))),neg(in4(_7062))) =
neg(and(and(inO(_7062),inl(_7062)),and(in2(_7062),

and(in3(_7062),in4(_7062)))))
By Boolean Expansion

For module nand5 :
Specified output list is [out(_7132)]
Derived output list is [out(_7171)]

Number of specified outputs is 1
Number of derived ouputs is 1

[out(_7132)] matches with [out(_7171)]

<<< Success! Behavior of nand5 meets its specification.<<<

>>>> Component nand5 verified! <<<<

Should this component be inserted into the library? [no]:

Performing AFITVERIFY Verification!

Select your action from the following choices:
Preload the previously verified components into the database

(This may increase execution speed of a verification run)
Reverify a component from the component library
List the nonprimitive components which have been verified this session
Insert a component into the component library area
Extract a component from the library area into current directory
Verify a new component from the current directory
Halt the program and exit Prolog

(Note: this option _ revocable at the next menu!)

Enter your choice: preload, reverify, list, verify, insert, extract, halt: v
Name of module (file) to be verified (do not include .pl suffix): nand3
Should this verification run be executed in TERSE mode? [yes]:

B-36

[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/multdyn.pl...]

[multdyn.pl consulted 0.467 sec -6,264 bytes]
[consulting /usr/users/ela/labovitz/NewVerify/Work/Components/nand3.pl...]
[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/primitive.pl...]

[primitive.pl consulted 0.533 sec 2,632 bytes]
[consulting /usr/users/ela/labovitz/NewVerify/Work/Components/inv.pl...]
[inv.pl consulted 0.284 sec 640 bytes]

[nand3.pl consulted 1.467 sec 4,744 bytes]
Component file nand3 loaded....
--- Beginning verification of module nand3

>>>> Component nand3 already verified! <<<<

Performing AFITVERIFY Verification!

Select your action from the following choices:
Preload the previously verified components into the database

(This may increase execution speed of a verification run)
Reverify a component from the component library
List the nonprimitive components which have oeen verified this session
Insert a component into the component library area
Extract a component from the library area into current directory
Verify a new component from the current directory
Halt the program and exit Prolog

(Note: this option -is- revocable at the next menu!)

Enter your choice: preload, reverify, list, verify, insert, extract, halt: v
Name of module (file) to be verified (do not include .pl suffix): nand4
Should this verification run be executed in TERSE mode? [yes]:

[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/multdyn.pl...]

[multdyn.pl consulted 0.433 sec -4,004 bytes]
[consulting /usr/users/ela/iabovitz/NewVerify/Work/Components/nand4.pl...]
[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/primitive.pl...]
[primitive.pl consulted 0.533 sec 2,632 bytes]
[consulting /usr/users/ela/labovitz/NewVerify/Work/Components/inv.pl...]
[inv.pl consulted 0.300 sec 640 bytes]

[nand4.pl consulted 1.550 sec 5,380 bytes]
Component file nand4 loaded....
--- Beginning verification uf module nand4

>>> Attempting to verify non-primitive module nand4>>>

B-37

»>>nand2 previously verified »>>

»>>nand2 previously verified »>>

»>>nand2 previously verified »>>

»>>inv previously verified »>>

»>>inv previously verified »>>

+> Module nand4 has verified submodules: [inv,nand2l

Applying Derive-Behavior Rule 2A to out(nand2-2Q-2Oll)) of

primitive component nand2:
nand2's output equation:

out(nand2..2Q20111)) :=or(neg(inO(nand2-2C-20111))),

neg(ini(nand2-.2Q-20111))))

Applying Derive-Behavior Rule 2B to out(invOC-2Olll)) of

nonprimitive component inv:
inv's derived behavior:

out(invOc?.20111)) := or(neg(in(invOC-2Olll))),neg(in(invOL-2Olll))))

Applying Derive-Behavior Rule 2A to out(nand2-1C2O111)) of

primitive component nand2:

nand2's output equation:

out(nand2-1C2Olll)) := or(neg(inO(nand2-1Q-201I1))),

neg(inl(nand21(-20111))))

Value of neg(or(neg(inOC-2olll)),neg(inlQ-2Olll)))):

and(inOQ-2Oll) ,inl(-.20111))

Ap~plying Derive-.Behavior Rule 2A to out(nand2..1Q20111)) of

primitive component nand2:
nand2's output equation:

out(nand2-lC2Olll)) := or(neg(inO(nand2-1C.20111))),

neg(inl(nand2-.1Q-20111))))

Value of neg(or(neg(inOC..20111)),neg(inlQ-2Olll)))):

and(inO(..20111) ,inl(-.20111))

Value of neg(or(and(inOQ-2Olll),inl(-.20111)),and(inO(-.20111),inl(-20111)))):

neg(inl(-.20111))))

Applying Derive-Behavior Rule 2B to out(invlC-2Olll)) of

B-38

nonprimitive component inv:

inv's derived behavior:
out(invlC-20111)) := or(neg(in(invl(_2Oll1))) ,neg(in(invlC..20111))))

Applying Derive-Behavior Rule 2A to out(nand2_.3(.20111)) of

primitive component nand2:

nand2's output equation:

out(nand2-3C.20111)) := or(neg(ino(nand2-3C-20111))),
neg(inl (nand2-3C-20111))))

Value of neg(or(neg(in2C..20111)),neg(in3(-20111)))):

and(in2C..20111) ,in3C..20111))

Applying Derive-Behavior Rule 2A to out(nand2_.3(_20111)) of
primitive component nand2:

nand2's output equation:

out(nand2-3Q-2Oll)) := or(neg(in0(nand2..3C20111))),

neg(inl (nand2.3C-20111))))

Value of neg(or(neg(in2Q-2Olll)),neg(in3C..20111)))):

and(in2(-20111) ,in3C-20111))

Value of neg(or(and(in2C..20111),in3Q-2Olll)),and(in2(-.20111),in3C-20111)))):

and(or(neg(in2C..20111)) ,neg(in3C.20111))),

or(neg(in2(..20111)) ,neg(in3C..20111))))

Does or(or(neg(inOC.20111)),neg(inlC..20111))),or(neg(in2Q-2olll)),

neg(in3Q-201ll))))=

neg(and(and(inOC..20111) ,inlC.20111)) ,and~in2(..20111) ,in3Q-20111)))) ???

or(and(or(neg(inoC.20111)) ,neg(inl(..20111))) ,or(neg(inO(-.20111)),
neg(inlC.20111)))) ,and(or(neg(in2C-20111)) ,neg(in3(-.20111))),

or(neg(in2C.20111)),neg(in3C..20111))))) =

neg(and(and(inOC..20111) ,inlC..20111)) ,and(in2(..20111) ,in3Q-20111))))

By Boolean Expansion

For module nand4:

Specified output list is [out(-.20181)]
Derived output list is [out (-.20220)]

Number of specified outputs is 1

Number of derived ouputs is 1

[outC-20l81)] matches with [outQ-2O22O)]

B-39

<<< Success! Behavior of nand4 meets its specification.<<<

>>>> Component nand4 verified! <<<<

Should this component be inserted into the library? [no]:

Performing AFITVERIFY Verification!

Select your action from the following choices:
Preload the previously verified components into the database

(This may increase execution speed of a verification run)
Reverify a component from the component library
List the nonprimitive components which have been verified this session
Insert a component into the component library area
Extract a component from the library area into current directory
Verify a new component from the current directory
Halt the program and exit Prolog

(Note: this option -is- revocable at the next menu!)

Enter your choice: preload, reverify, list, verify, insert, extract, halt: 1

The part "nand4" has been previously verified during this session.
The part "nand5" has been previously verified during this session.
The part "nand3" has been previously verified during this session.
The part "inv" has been previously verified during this session.
The part "nand2" has been previously verified during this session.

Performing AFITVERIFY Verification!

Select your action from the following choices:
Preload the previously verified components into the database

(This may increase execution speed of a verification run)
Reverify a component from the component library
List the nonprimitive components which have been verified this session
Insert a component into 1.".e component library area
Extract a component from the library area into current directory
Verify a new component from the current directory
Halt the program and exit Prolog

(Note: this option -is- revocable at the next menu!)

Enter your choice: preload, reverify, list, verify, insert, extract, halt: h
Do you really want to halt Prolog? y/n [n]? y
csh> exit

B-40

csh>
script done on Mon Nov 25 09:17:17 1991

B-41

B.2.5 Vrificalzon of Half Adder half add.pl

Script started on Mon Nov 25 09:18:50 1991
csh> AFITVerify

Welcome to AFITVERIFY!

(Type ? at any prompt if you require help)

Performing AFITVERIFY Verification!

Select your action from the following choices:
Preload the previously verified component6 into the database

(This may increase execution speed of a verification run)
Reverify a component from the component library
List the nonprimitive components which have been verified this session
Insert a component into the component library area
Extract a component from the library area into current directory
Verify a new component from the current directory
Halt the program and exit Prolog

(Note: this option -is- revocable at the next menu!)

Enter your choice: preload, reverify, list, verify, insert, extract, halt: v
Name of module (file) to be verified (do not include .pl suffix): halfadd
Should this verification run be executed in TERSE mode? [yes]:

[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/multdyn.pl...]
[multdyn.pl consulted 0.367 sec 0 bytes]
[consulting /usr/users/ela/labovitz/NewVerify/Work/Components/halfadd.pl...]
[consulting /usr/users/ela/labovitz/NewVerify/Work/Parts/primitive.pl...]
[primitive.pl consulted 0.533 sec 2,900 bytes]
[consulting /usr/users/ela/labovitz/NewVerify/Work/Components/inv.pl...]
[inv.pl consulted 0.283 sec 768 bytes]

[halfadd.pl consulted 1.684 sec 6,732 bytes]
Component file halfadd loaded....
--- Beginning verification of module halfadd

>>> Attempting to verify non-primitive module halfadd>>>

>>> Attempting to verify non-primitive module inv>>>
>>>nand2 primitive (needs no verification)>>>

+> Module inv has verified submodules: [nand2]

B-412

Applying Derive-Behavior Rule 2A to out(gl(_7330)) of
primitive component nand2:

riand2's output equation:
out(gl(_7330)) := or(neg(inO(g1(_7330))),neg(inl(g1(_7330))))

Does neg(in(_7330)) =

neg(in(_Y330)) ???

or(neg(liJ_2330)),neg(in(_7330))) =

neg(in(_7330))
By Boolean Expansion

For module inv :
Specified output list is [out(_7400)]
Derived output list is [out(_7439)]

Number of specified outputs is 1
Number of derived ouputs is 1

[out(_7400)] matches with [out(_7439)]

<<< Success! Behavior of inv meets its specification.<<<

>>>inv previously verified >>>

>>>inv previously verified >>>

>>>nand2 prev-'-isly verified >>>

>>>nand2 previously verified >>>

>>>nand2 previously verified >>>

>.>nand2 previously verified >>>

+> Module halfadd has verified submodules: [inv,nand2]

Arplying Derive-Behavior Rule 2A to out(nand2_2(_7178)) of
primitive component nand2:

nand2's output equation:
out(nand2_2(_71,8)) := or(neg(inO(nand2_2(_7178))),

neg(inl(nand2_2(_7178))))

Applying Derive-Behavior Rule 2A to out(nand2_O(_7178)) of

primitive component nand2:

nand2's output equation:
out(nand2OC._7178)) := or(neg(inO(nand2_0C.7178))),

neg(inl(nand2.O(-7178M))

Applying Derive-Behavior Rule 2B to out(inv-l..7178)) of

nonprimitive component inv:

inv's derived behavior:
out(inv-l.1Q7178)) := or(neg(in(inv-l(-7178))) ,neg(in(inv-l.1C7178))))

Value of neg(or(neg(in1C-7178)),neg(inlC.7178)))):

and(inlC.7178) ,in1(-7178))

Value of neg (or (neg (inOC..7178)),and (inl (_7178), inl (7178)))

and(inOC..7178) ,or(neg(inl1Q7178)) ,neg(inl1C7178))))

Applying Derive-Behavior Rule 2A to out(nand2_1C7178)) of

primitive component nand2:
nand2's output equation:
out(nand2-1C.7178)) := or(neg(inO(nand2-I(-178))),

neg(inl(nand2-1C-778)))

Applying Derive-Behavior Rule 2B to out(inv.OC.7178)) of
nonprimitive component inv:

inv's derived behavior:
out(inv-.O(-7178)) := or(neg(in(inv-.OC..7178))),neg(in(inv-OC..7178))))

Value of neg(or(neg(inOC..7178)),neg(in0Q-7178)))):

and(in0Q-7178) ,in0C-7178))

Value of neg (or (neg (in1Q(7178)),and (in0C(7178), inO (-778))))

and(inlQ-7178) ,or(neg(inO(-7178)) ,neg(inOC.7178))))

Does or(and(inOC..7178),neg(inlC..7178))),and(inlC..7178),neg(inOC..7178))))

or(and(neg~inO(..7178)),inl(_7178)),and(inO(-7178),neg(in1C-7178)))) ???

or (and inOC..7178) ,or (neg(ini (-7178)) ,neg(inl (-.7178M)))P

and(inlC..7178),or(neg(in0Q-7178)),neg~inOQ-7178)))))=

or(and(neg(ino(-7178)),inlC.7178)),and(inO(-7178),neg(inlC..7178))))

By Boolean Expansion

Applying Derive-.Behavior Rule 2B to out(inv-.2C.7178)) of

nonprimitive component inv:
inv's derived behavior:

Applying Derive-.Behavior Rule 2A to out(nand2-.3C-7178)) of

13-44

primitive component nand2:
nand2's output equation:

out(nand2_3(_7178)) := or(neg(inO(nand2_3(_7178))),

neg(in1(nand2_3(_7178))))

Value of neg(or(neg(inO(_7178)),neg(inl(_7178)))):

and(inO(_7178),inl(_7178))

Applying Derive-Behavior Rule 2A to out(nand2_3(_7178)) of
primitive component nand2:

nand2's output equation:
out(nand2_3(_7178)) := or(neg(inO(nand2_3(_7178))),

neg(inl(nand2_3(_7178))))

Value of neg(or(neg(inO(_7178)),neg(inl(_7178)))):

and(inO(_7178),inl(_7178))

Does and(inO(_7178),inl(_7178)) =
and(inO(_7178),inl(_7178)) ???

or(and(inO (-7178),inl (-7178)),and(inO (_7178),in1(_7178))) =

and(inO(_7178),inl(_7178))
By Boolean Expansion

For module halfadq :
Specified output ibst is [carry(_7248),sum(_7264)]
Derived output list is [carry(_7321),sum(_7305)]
Number of specified outputs is 2
Number of derived ouputs is 2

[carry(_7248),sum(_7264)] matches with [carry(_7321),sum(_7305)]

<<< Success! Behavior of halfadd meets its specification.<<<

>>>> Component halfadd verified! <<<<

Should this component be inserted into the library? [no]: yes

Performing AFITVERIFY Verification!

Select your action from the following choices:
Preload the previously verified components into the database

B-45

(This may increase execution speed of a verification run)
Reverify a component from the component library
List the nonprimitive components which have been verified this session
Insert a component into the component library area
Extract a component from the library area into current directory
Verify a new component from the current directory
Halt the program and exit Prolog

(Note: this option -is- revocable at the next menu!)

Enter your choice: preload, reverify, list, verify, insert, extract, halt: halt
Do you really want to halt Prolog? y/n En]? exit
Please answer Yes or No followed by RETURN
Do you really want to halt Prolog? y/n En]? y
csh> exit

csh>
script done on Mon Nov 25 09:21:57 1991

B-46

Bibliography

1. Barrow, Harry G. "Proving the Correctness of Digital Hardware Designs." Proceedings
of The National Conference on Artificial Intelligence. 17-21. 1983.

2. Barrow, Harry G. "Proving the Correctness of Digital Hardware Designs," VLSI
Design, 64-77 (July 1984).

3. Barrow, Harry G. "VERIFY: A Program for Proving Correctness of Digital Hardware
Designs," Artificial Intelligence, 24:437-491 (December 1984).

4. Bratko, Ivan. Prolog Programming for Artificial Intelligence (Second Edition).
Reading, Massachusetts: Addison-Wesley Publishing Company, Inc., 1990.

5. Brezocnik, Z., B. Ilorvat and M. Gerkes. "Tool for System Design Verification."
Proceedings of the CompEuro 88 - System Design: Concepts, A lethods and Tools.

100-107. Washington D.C.: IEEE Computer Society Press, 1988.

6. Cohen, Daniel I. A. Introduction to Computer Theory (Second Edition). New York:
John Wiley & Sons, Inc., 1991.

7. Cohen, Jacques. "View of the Origins and Development of Prolog," Communications
of the ACM, 31 (l):26-36 (January 1988).

8. Cohn, Avra. "Correctness Properties of the Viper Block Model: The Second Level."
Current Trends in Hardware Verification and Automated Theorem Proving. edited by
Graham Birtwistle and P. A. Subrahmanyam, 1-91, New York: Springer-Verlag, 1989.

9. Dill, David L. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. PhD dissertation, Carnegie Mellon University, February 1988.

10. D)ougherty, Edward R. and Charles R. Giardina. Mathematical Methods for Artificial
Intelligence and Autonomous Systems. Englewood Cliffs, New Jersey: Prentice-Hall,
Inc., 1988.

11. Dukes, CPT Michael A. "Formal Verification Using VHDL." PhD Prospectus, School
of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
March 1990.

12. Dukes, Michael Alan and Frank Markham Brown. Proving Boolean Equivalence with
Prolog. WRDC Technical Report WRDC-TR-90-5006, Wright-Patterson AFB OH:
Wright Research and Development Center,' February 1990.

13. Eicher, Capt Joseph W. Logic Programming in Digital Circuit Design. MS thesis,
AFIT/GCE/ENG/91D-03, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1991.

14. Goguen, Joseph A. "OBJ as a Theorem Prover with Applications to Hardware
"Verification." Current Trends in Hardware Verification and Automated Theorem
Proving. edited by Graham Birtwistle and P. A. Subrahmanyam, 218-267, New York:
Springer-Verlag, 1989.

BIB-1

15. Grabowiecki, Tadeusz, Adam Pawlak and Wojciech Sakowski. "A University
Framework for Correct by Construction IC Design," Microprocessing and
Microprogramming, 23:37-43 (1988).

16. Hill, Fredrick J. and Gerald R. Peierson. Digital Systems: Hardware Organization
and Design (2nd Edition). New York: John Wiley & Sons, Inc., 1978.

17. Hill, Fredrick J. and Gerald R. Peterson. Introduction to Switching Theory & Logical
Design (3rd Edition). New York: John Wiley & Sons, Inc., 1981.

18. Hillman, Abraham P. and Gerald L. Alexanderson. A First Undergraduate Course in
Abstract Algebra. Belmont, California: Wadsworth Publishing Company, Inc., 1983.

19. Hlopcroft, John E. and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Reading, Massachusetts: Addison-Wesley Publishing
Company, Inc., 1979.

20. Howell, Gene Edward. Analysis, Design, and Testing of Gallium Arsenide Digital
Radio Frequency Memory Modules. MS thesis, AFIT/GCE/ENG/91D-05, School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OI,
December 1991.

21. Johnsonbaugh, Richard. Discrete Mathematics. New York: Macmillan Publishing
Company, 1984.

22. Knaus, Rodger. "A Pocket Guide To PROLOG," AI Expert, 5(7):63-64 (January
1991).

23. Kowalski, Robert A. "Early Years of Logic Programming," Communications of the
ACM, 31(1):38-43 (January 1988).

24. Liaw, Ileh-Tyan, Kim-Thu Tran and Chen-Shang Lin. "VVDS: A Verification/
Diagnosis System For VHDL." 26th ACM/IEEE Design Automation Conference.
,435-440. New York: ACM Press, 1989.

25. Quintus Computer Systems, Inc., Mountain View, CA. Quintus Prolog Library
Manual, Nov 1987. Version 1.

26. Quintus Computer Systems, Inc., Mountain View, CA. Quintus Prolog Reference
Manual, Feb 1987. Version 10.

27. Quintus Computer Systems, Inc., Mountain View, CA. Quintus Prolog System

Dependent Features Manual For UNIX Systems, Mar 1987. Version 10.

28. Quintus Computer Systems, Inc., Mountain View, CA. Quintus Prolog User's Guide,
Nov 1987. Version 11.

29. Robinson, A. J. "A Machine-Oriented Logic Based on the Resolution Principle,"
Journal of the Association of Computing Machinery, 12:23-41 (January 1965).

30. Sparks, Capt Kevin L. A Prolog-Based System for Hardware Verification. MS thesis,
AFIT/GCE/ENG/91M-05, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, March 1991.

31. Sterling, Leon and Ehud Shapiro. The Art Of Prolog: Advanced Programming
Techniques. Cambridge, MA: The MIT Press, 1986.

BIB-2

32. Zycad Corporation. Zycad System VHDL Reference Manual, 1990. Revision 2.0a.

BIB-3

Vita

Captain Stuart L. Labovitz was born on April 4, 1963 in New Haven, Connecticut.

Hie attended Manalapan High School, Manalapan, New Jersey, and graduated in June

1981. lie received a Bachelor of Science in Electrical Engineering from Lehigh University

in June 1985. He was a Distinguished Military Graduate of the Air Force Reserve Officer

Training Corps receiving a regular commission as a Second Lieutenant in the USAF. After

graduation, he worked as a civilian employee for the US Army Avionics Research and

Development Activity, Fort Monmouth, New Jersey, from June 1985 through September

1985. Following entry into active duty in October 1985, he was assigned to the Avionics

Laboratory, Air Force Wright Aeronautical Laboratories. During this assignment, he

served as Microwave Project Engineer, and then as Project Engineer and Executive Officer

for the newly formed Electronic Technology Laboratory, Wright Research and Development

Center. He began full-time work on a Masters of Science in Computer Engineering in June

1990, and graduated from this program in December 1991.

Permanent address: 18 Sheffield Drive

Manalapan, NJ 07726-3619

VITA-1

